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ABSTRACT

Robust local control of the Pratt & Whitney FI00 turbofan engine is done

using the LQG procedure. A linear model of the engine is augmented by

important sensor and actuator dynamics. A novel model reduction method is

developed based on the modal decomposition of the system transfer function.

LQG control is accomplished in two steps: first, a Kalman filter transfer

function is designed using some tools for loop-shaping. Then, a loop transfer

recovery method is used to get an LQG controller that is robust with the full

linear model replacing the reduced model on which the design was based. The

resulting controller satisfies the control specifications of zero steady-state

error to steps and fast response times.
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I. INTRODUCTION AND SUMMARY

i.i Background

There is a very definite need for multivariable control design examples.

Available methodologies (state-space and frequency-domain) can at best propose

alternative controller design methods, but only through sufficiently complex

examples can control engineers discover how the methods actually work and in

what directions they need to be extended.

Especially since multi-input, multi-output, (MIMO) methodologies are by

necessity more involved mathematically than their single-input, single-output

(SISO) counterparts, the only way to see how these methodologies work is by

applying them to some practical examples_ this way also point to any shortcoming

they might have. The above points will be demonstrated in this thesis.

At present, examples of MIMO control using the LQG procedure (used in this

work)that are fairly nontrivial are few: they are mainly for low-order systems

and a small number Of inputs and outputs (a recent example is [6]).

Prior designs for the FIO0 jet engine, although numerous, do not include

one based on the full LQG procedure which yields a dynamic controller. The

reason for this was on one hand that there are no significant noise sources to

justify a Kalman filter state estimator and also because some state measurements

are possible so that state feedback can be implemented. The reasons for using

an LQG approach here are first, that it yields a dynamic (non-constant) feedback

controller which adds more flexibility to the design and second that not all

state variables are measured or, at least, cannot be included as outputs.
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A significant part of the thesis is dedicated to model reduction, the

approximation of a large-order linear system by one of lower order. A

subject of considerable interest lately, model reduction has however failed

to make its connections with control. The fact that an aggregated model will

be used in a feedback control loop has not been investigated thoroughly and

most methods tend to be open-loop in their philosophy. This existence of model

aggregation procedures in vacuo can lead to misleading or bad designs; a

robustness viewpoint is needed to relate errors of approximation with allowable

controls. This viewpoint is taken up in our work.

1.2 Contributions of the Thesis

The main contribution of this thesis is to provide an example of a control

design sequence for a multivariahle system, the F100 engine.

A basic first stage is that of model reduction. By controlling the order

of a _educed model, one controls the order of the dynamic compensator. This

freedom in the order of the dynamic controller is a desirable feature and an

advantage over the algebraic design methods [23], where the order of the

controller cannot be easily specified.

The reduction method developed in this thesis has a number 0f-novel features:

Although basically a state aggregation method' it uses:the residue analysis

perspective for approximation. This results in a better understandingof the

trade-offs involved in the approximation. It also makes the procedure complete,

since it gives a way of selecting the poles of the system that are to be included

in the reduced model.



-Ii-

Most importantly, the reduction procedure yields an approximate system

that can be used in a feedback loop. The error involved in the approximation

is kept under control and the robustness requirement translates into a band-

width requirement for the plant-controller loop.

The controller design methodology is based on the LQG formulation and

largely follows the work of Stein, Doyle and others (see e.g. [20],[21] and

[19]). The design is done on the reduced model.

The emphasis is on the frequency-domain properties of the state-space

based LQG designs. Simple and efficient tools for loop-shaping are employed

that lead to satisfactory designs. These tools accomplish singular value

"pinching" in selected frequency ranges using approximations derived from the

Kalman Frequency Domain Equalities.

Finally, for the first time, a set of Inverse Kalman Frequency Domain

equalities are derived. They are used to rederive the robustness properties of

the LQ regulator and Kalman filter inverse return difference.

1.3 Outline of the Thesis

In Chapter 2 a description is given of the FI00 engine. Its dynamic charac-

teristics, as captured in the linear model _t one operating point, are discussed.

The performance specifications are given insofar as they are taken into account

in our design.

Chapter 3 contains a comprehensive discussion of model reduction issues.

The steps of our procedure are detailed and the FI00 _xample is given as an

application.
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Chapter 4 is the design chapter. The LQG controller synthesis methodology

is presented and applied to the e:_gine example. A full presentation of the

fine tuning of the controller is also included.

Chapter 5 contains a summary and Some proposed directions for further

research.
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2. THE FIO0 ENGINE MODEL

2.1 Introduction

A linear model of the Pratt & Whitney FI00 afterburning turbofan jet

engine is used as the design example in this thesis ([i],[3],[16],[22]).

It is the same model as that used in the National Engineering Consortium's

Alternatives for Linear Multivariable Control (ALMC) conference, in 1976-77

[i]. It is a linearization of a nonlinear simulatiorl of the F-100 engine

at the operating point of 83 ° Power Lever Angle (PLA), sea-level static.

The purpose of this thesis is to provide local control of the engine using

this model. Sti]l, insofar as the linear modcl represents a real system, it is

desirable to know some things about the engine itself. They can help a designer

considerably in doing sensible control. The} also provide the basis on which

to interpret the dynamic characteristics of the engine that are captured in the

linear model.

The present chapter starts with a brief discussion of the thermodynamic and

fluidmechanic aspects of jet eDgines in gene_-al and of the FI00 engine in

particular.

The limitations arising fr]m the real e gine control problem are then given.

The way these are taken into ac,:ount in the _:ore narrow context of local design

is examined.

Next, the dynamic characteristics of the: linear model are detailed. The

multivariabl,_ pole-zero structure is given ard the important dynamics are

isolated using modal analysis.

Finally, the control requirements are stated. This sets the stage for

Chapter 3, where an adequate reduced model f(r doing satisfactory control is

derived.

r
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2.2.1

The F I.O0 Engine

A brief description of the FI00 turbofan engine

Pratt & Whitney's FIO0 engine (Fig. 2.1) is an advanced, afterburning

turbofan engine. Insofar as we shall try and derive guidance in doing multi-

variable control from a knowledge of the real engine characteristics, a brief

thermodynamic and fluid mechanic description of the engine is desirable [8].

This will also help delineate the extent to which our control is realistic:

there can be many acceptable designs for the available linear model but not

all of them will make sense when applied to the real engine.

Our description will be with reference to Figs. 2.2, 2.5 and 2.4. A jet

engine is a system that converts thermal energy into mechanical energy; the

thermal energy is provided by the combustion of the fuel; the mechanical energy

output is manifested as a net thrust due to the higher speed of theairflow at

the exit of the engine. Thus a jet engine can be viewed as a high-velocity

gas generator.

Except for the fuel combustion proces_ almost all turbomachinery flow

processes are very nearly adiabatic. The naming of the various stages of the

engine is standarized: they are called the station numbers and the most important

of them are shown in Fig. 2.2. Additional ones for the FI00 engine are shown in

Fig. 2.4. The first stage of a turbojet engine, the inlet for the airflowt

functions as a diffuser; it helps decelerate the flow, at the sa_e time raising

its temperature and pressure. In a temperature entropy diagram (Fig. 2._this

corresponds to moving from point 0 to point 2 along a constant-entropy line.
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To increase the efficiency of the process, the compressor stage further increases

the temperature and pressure of the air. At the burner, fuel is mixed with the

air and the mixture is burned at approximately constant pressure. This is the

stage where thermal energy is added to the gas which will eventually be converted

to mechanical work. The motion in the T-S diagram is shown as a motion along a

constant pressure line from point 3 to point 4. To complete the cycle, the

expanded gas is passed through a turbine, where part of the work is extracted to

power the compressor; at the same time the temperature of the gases drops and so

does the pressure. Finally, the exit nozzle has a similar effect to the turbine,

with the result that, for a well designed engine, the exit pressure corresponds to

the ambient conditions, point 7 in (Fig. 2.3.) The thermodynamic cycle we just

described is called the Brayton cycle.

Significant improvement to the propulsive efficiency (the ratio of the thrust

delivered to the airplane frame to the net mechanical power in the exhaust) can be

accomplished with a turbofan engine. A second turbine is added downstream of the

first one. It powers a fan (see Fig. 2.2) that pumps air, which is bypassed from

the main airflow. This secondary flow either appears directly as a second thrust

component or is mixed with the main flow downstream of the turbines and before the

exit nozzle (as is the case for the F100 engine, Fig. 2.4). The ratio of the

bypassed flow to the main flow through the gas generator is denoted by a, the

bypass ratio. Large commercial turbofan engines have a big a, while engines like

the F100 have a smaller bypass ratio, in our case near 1.

Since two turbines and compressors are present, we use the notation: at entry of

high compressor, station number 2.5, and at exit of high turbine, station nt_ber 4.5.
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The afterburner, present in the FIO0 engine (Fig. 2.4) but not in use at

our operating point, provides addi_ionaI thrust, but only for short intervais of

time; this is because the fueI Which is burned there is mixed with air at a

higher temperature but also higher mach number and thus the process is considerably

less economical.

2.2.2 Engine Performance and Limitations

in the previous section we described the general principles of operation of

the F100 engine. The description applied mai£1y to the steady-state running of the

engine; for the purposes of control, however, we are interested in the transient

behavior of the engine, as it moves from one operating point to another. In any

engine simulation, this behavior is captured by component diagrams and dynamics

that are used to integrate them.

A component diagram (see for example Fig. 2.5 and 2.6) relates the important

nondimensional groups of variabies that describe an engine component. In the

compressor diagram (Fig. 2.5) the variables are the corrected airflow at the inlet

and the pressure ratio (the ratio of output to input pressure). Also sketched are

the lines of constant (rotational) speed. We see that higher speeds are associated,

in general, with high pressure ratios and bigger airfIows. A significant feature

of the compressor as weIl as the fan diagram, is the limit line at the top of the

diagram, the surge line.

Surge phenomena in turbomachinery are very undesirable. They lead to sig-

nificant deterioration of the component performance, for example ioss of pumping

ability of the compressor (in other words of the ability of the stator-rotor
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sequences to deflect the flow sufficiently). This surging can be accompanied

by rotating stall phenomena (see Dixon [4]) which lead to vibration and noise

for the engine. For our purposes, therefore, surge should be avoided and the

trajectories of control should stay clear of the surge line.

A good engine design will make the component (compressor, fan or turbines)

operate along a steady-state operating line (dashed line in Fig. 2.5 and 6) which

stays sufficiently far from the surge line. During transients, however, stall

margins can deteriorate. In Fig. 2.S possible approximate paths are indicated

away from the steady-state line, while accelerating or decelerating the engine.

Note that stall margin during deceleration increases for the compressor but

decreases for the fan.

The operating point for which the linear model used is valid is at almost

full power while at rest at sea level. This mode of operation is characterized

by the fact that the engine components are choked or, in rough terms, that no

further increase in through-flow is possibl_ Choking is also characterized by the

fact that disturbances (e.g. pressure changes) cannot travel upstream, since the

sonic velocity has been reached by the flow. Choking, contrary to surge, is not

an undesirable state and it leads to some simplification in describing the

operation of the engine.

In an engine simulation like the one for the FI00 engine from which the

linear model was obtained by linearization, the component diagrams are put together

to form a complete description of the engine dynamics (Fig. 2.7). Nonlinear

The way surge can be achieved is for example, through reduction of the airflow at

constant speed. Surge phenomena are only incompletely explained to date, since
they are associated with unstable and turbulont flow.
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differential equations are used to simulate the behavior of the engine off

equilibrium.

A modern turbofan engine operates, because of its high-performance require-

ments, very near its structural and materials limits. Care should be taken in

the design stage to avoid excessive vibrations or noise. Lighter and stronger

materials are used to stretch the efficiency of the thermodynamic cycle to the

limit. At the entry point of the high-temperature turbine, the gases may have

temperatures very near the limit of the turbine blades; cooling is often necessary

and excursions to higher temperatures can only last a few seconds.

For the design problem of the ALMC conference, the above limitations were

never explicit. This will by necessity be true for our design as well Meaningful

data were not available to the author and one must be content with keeping track

of the departures of our variables from their reference positions.

Engine Operation

Let us briefly describe how the control task is accomplished. The Power

Lever Angle (PLA), ranging from 0 to I00 percent (Pill setting) is a general

thrust command given by the pilot. The on-board computer then translates this

power setting into values of an appropriate set of reference variables (for

example shaft speeds, etc.). The control system them tries to achieve this change

in reference settings. Since in steady-state we want no error between reference

and real outputs the requirement is that integrator action is included in the

controller design. This is accomplished in the proposed design.
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Choice of Outputs

The set of measured variables does not coincide with the set of desirable

controlled variables. Thrust cannot be directly measured and neither can the

two stall margins of the engine [see Table 2.1).

Thus, one has to make a choice, to some extent arbitrary, as to what to

include in the set of outputs. Provided there is strong correlation between the

values of the selected variables and the set of variables that one aims to control,

the control action will be effective. In our case, the selection will be from

among the set of directly measurable states.

The complete set of engine states of the linear model is given in Table 2.2.

Most of them can be directly measured. The choice of outputs will be from among

these state variables.

The two shaft speeds are two of the four outputs selected. As will be seen

in section 2.3, they include the dominant dynamics, at least in the range of

control selected.

The f_st turbine engine temperature, T4. 5 is also selected as the third

output variable. It gives an indication of whether the engine limitations are

exceeded.

Th_ fourth output variable choice is one of the pressures. We select P3'

the compressor discharge pressure. The state P3 is fairly dominant as the

eigenvector analysis reveals) &Ithough it is associated with a faster pole (at -17S).

Control Inputs: The FI00 turbofan jet engine is a true multlvariable control

example because of the existence of more than one control variable. The main one
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TaJ_L!_ 2. I

E "ng]_ne Outputs : Ori_in_l Set *

YI= Engine Net Thrust Level (Ibm)

Y2= Total Engine Airflow (Ib/sec)

Y3= Turbine Inlet Temperature (°R)

Y4 = Fau Stall Margin

Y5= Co_pressor Stall I_argin

TABLE 2.2

List of Engine States and New Outputs with units

XI= Fan Speed (NI) - RPrl

X2= Compressor Speed (N2) - RPM

X3= Compressor Discharge Pressure (Pt3) -PSIA

X4= Interturbine Volume Pressure (Pt4.5) - PSIA

xS= Augmentor Pressure (Pt7) - PSIA

• _ ..... _........... , ) - oX6= Fan D1scha_ .....T_,_!,_-_*_ (_t2.5

:_7= Du<_t !e-_rature (Tt2.5e) - o R

XS= Compressor Discharge TemT_erature (Tt3) -o R

xg= ]_urner Exit Fast Response Temperature (Tt4hi) - o R

XIO= Burner Exit Slow Response Temperature (Tt41o) - °R

X I= Burner Exit Total Temperature (Tt4) -° R

X'2= Fan Turbine Inlet Fast Temperature (Tt4.5hi) _o R

X 3 = Fan Turbine Inlet Slow Temperature (Tt4.51o) - °R

X'4= Fan Turbine Exit Temperature (Tt5) - °R

X_5 = Duct Exit Temperature (Tt6) - °R

X'6= Duct Exit Temperature (Tt7) - o R

* Ta1:en from [1]

New Set of Outputs: YI=XI

Y2=X2

Y3=X3

Y4=Xl2+Xl3
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is (the traditional and only control variable of the past) fuel flow.

Returning to the componentwise description of the engine for a moment, the

observation is that for fixed geometry of the compressors, fan and turbines

we get efficient operation over a limited range of speeds. This can be easily

accounted for if we consider the elementary stage of any turbomachinerN a blade

row (stationary or nonstationary). We can then see that the angle geometry of

the row (the angIe at which the blades are positioned relative to the flow)

criticaIly determines the ability of the machine to exchange kinetic energy from

the fiow with rotationai energy of the blade row. If, as is the case in modern

jet engine designs, we allow for a variable geometry (for practical purposes in

the stator rows) then we stream]ine the efficiency of the component. The F100

engine provides two variable geometry controI inputs, one at the fan stage (at the

inlet stationary guide vane) and the other at a stator stage of the compressor.

The fourth control input considered in our design will be the exit nozzle area.

Varying the nozzle area affects the thrust delivered to the aircraft. Also exit

nozzIe area is used to control the internal pressure.

A list of the inputs with units can be found in Table 2.3.

2.2.5 SensOrS and Actuators

To make the linear model as accurate as possible, it is required to include

dynan_ics for the output sensors a_d the input _ctuators (Fig. 2.8). A description

of the approximate linear dynamics used to represent them follows ([i]).
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TABLE 2 •3

Engine Control Inputs with Units

Ul= Main Burner Fuel Flow (WFMB) -ib/hr

U2= Exit Nozzle Area (Aj) - ft 2

U3 = Inlet Guide Vane Position (VG I) - deg

U4 = High Variable Stator Position (VG 2) - deg
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Sensors

With the exception of the fan turbine inlet temperature sensor, all the

sensors can be represented by first-order lags with transfer functions

1
The time constants T. _Ire in general very small. The tachometers

sT.+l 1
1

measuring the two shaft speeds have time constants of 0.03-0.05 sec. The

pressure sensors are also fast with time constants of about 0.05 sec. All these

are fast and will therefore be omi'_ted.

The transfer function of the _an turbine inlet temperature sensor is shown

in Fig. 2.9a and a Bode plot of i_ is given in Fig. 2.9b. The sensor is of

this form because it has to be protected from its high-temperature environment.

One of the time constants (5.49 sec.) is slower than all the time constants of

the engine. It is therefore a main control consideration to achieve fast responses

in the presence of this slow sensor. It should be noted that the zero associated

with the sensor is at -0.47 rad/sec, between the two poles. This keeps the

bandwidth of the sensor wide.

Actuators

The actuator dynamics are more complicated than the sensor dynamics. This is

so because they must provide work and are as a result physically larger. A major

source of error will lie in the approximations that will be made for these dynamics.

Fuel Flow Actuator

The fuel flow actuator is a hydromechanical system composed of a fuel pump

and a metering valve.
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Fig2.9b: Bode plot of the FTIT Sensor Transfer Function.
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The metering valve is positioned by a fuel-actuated piston which in turn

is driven by an electrically controlled servovalve. Feedback about the position

of the metering valve shaft is provided by a position sensor which is a source

of backlash. Both the metering valve and the fuel pump servo regulator are

represented by first-order systems (Fig. 2.10). Only the dynamics of the fuel

pump are kept, however, since the time constant of the valve is 0.02 sec.

Exit Nozzle Actuator

The nozzle area actuator h;is two parts (Fig. 2.11) The first part, the

servo dynamics, is fast and will be omitted. The second part, an air-driven

motor controller has second-order dynamics. The characteristics of this motor

vary with flying conditions. At our operating point it has a bandwidth of about

38 rad/sec and a damping ratio _=0.56. Because it is highly undamped, these

dynamics are included.

Fan and Compressor geometry actuators

The !inearized models for the two variable geometry actuators are shown in

Fig. 2.12 and 2.13. These models are further simplified to yield the approximate

models shown. The fast time-constants are omitted and the resulting feedback

transfer functions yield the first-order systems with bandwidths of 12 and

40 rad/sec.
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FULL LINEAR DYNAMICS
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Fig2.12: Fan Variable Geometry (VGI) Dynamics.

APPROXIMATE DYNAMICS

Fig2.13: Compressor Variable Geometry (VG 2)

Dynamics.
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2.3 Engine Dynamic Characteristics

2.3.1 Introduction

The previous section described the operation of the engine in qualitative

terms. Next we discuss the engine dynamics quantitatively, based on the linear

model at the operating point of 83 ° power level angle (see Appendix A).

For this, we need a detailed description of the dynamics that make up the

engine response, their frequency characteristics and their relative importance.

This will help in the selection of those parts of the engine dynamics

which it is important to affect directly for the purposes of control.

2.3.2 The Pole-Zero Structure

The F!00 jet engine is a complex physical system that can at best be only

approximately modelled by a mathematical system. Events in the engine can be

broadly classified according to the time scales characterizing them as follows.

Air flows are the fastest category, having time scales of the order of 10 -2 sec.

Then come fuel flows, at about lO-isec and also guide vane {variable geometry)

and nozzle _rea response times. Finally, the dominant dynamics of angular rotor

acceleration, of the order of 1-10 sec.

Table 2.4 list the poles of the linear system augmented by the significant

sensor and actuator dynamics. We see that the spread of the poles corresponds

to the spread described above. It is desirabte to associate poles with engine

states so that th_ classification of the dynamics given is verified.

To accomplish this, we give an eigenvector analysis of the linear system.

Fig. 2_4 plots, for each eigenvalue, th_ dominant components of its normalized
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TABLE 2.4

A_u_mented System Poles

i)
2)
3)
4)
5)
6)
7)
8)
9)
Io)

11)

12)

_3)

14)

15)

16)

17)

18)

19)

2o)

21)

22)

23)

-0.18204

-0.64773

-1.6810

-I .9057

-2.6184

-6.7148+ji .312

-6.7148-ji .312

-10.

-12.

-17.805+j4.7311

-17.805-j4.7811

-18.592

-21.0p6 331.759

-21.056-j31.259

-21.327+j0.8208

-21.327-j0.8208

-38.678

-40.

-47.126

-50.661

-59.161

-175.67

-577.04
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Fig2.14: Ei_envector Analysis : Main Zomponents of

Normalized Eigenvectors (see Table2.2 for names

of states).
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eigenvector. This gives an indication of the directions (in this case states)

in which each eigenvalue is most important. A fairly strong association of

states with poles emerges from Fig. 2.14. In general, pressures and temperatures

are associated with fast poles, while the shaft speeds with the relatively

slower ones.

Modal analysis

To decide which dynamics are dominant, we use the modal decomposition of the

system ([2],[13]).

Given a system in state-space form:

: A xCt) + B

L(t) : C

with distinct eigenv_lues, one can write an additive decomposition of its transfer

function G(s) :

_G(s)"= C (sI-A) -IB_ = nz s+l.--IR" _ nz --Ri/lil+s/-_.
i=l I i=l z

T
where R. = C u.v.B are the residue matrices. The vectors u. are the right

--1 -- --I--I-- --I

T
eigenvectors and v. are the row elements of the inverse eigenvector matrix.

--l

Note that the last expression has the advantage that the frequency-dependent terms

1

_+s/li are normalized (i.e. they all go to 1 as a._O).
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Now it is easily proved that for an unobservable or uncontrollable pole,

the residue matrix is zero. By extension, for any pole, the magnitude of the

residue matrix (in the normalized form of the last expression) correlates with

how strongly observable and controllable the mode is. It certainly is true that

R.
the larger the residue term --i the larger the contribution of the corresponding

X.
i

pole to the response of the system (at least for sufficiently low frequencies).

For the above reasons, it is useful to calculate the norm of these residue

matrices. _e choice of a norm is not critical. We have used the following three

norms : (where
R.

1

i) The singular value norm: o (_).
max --

2) The row norm: max( _ laijl)
i j

3) The column norm: max _laij I
ji

Linearization

The residue matrix norms are dependent on the scaling of the system. It is

therefore useful at this point to consider the nature of the linear model.

It is derived from the nonlinear description of the engine which can be

written as follows:

i(t) = f(xCt),u_(t))

_(t) = i(x_(t) ,u(t))

where x(t) is the state vector, [(t) the output and u(t) the input vectors.

function _f is such that at a steady-state point -oX (t), Zo(t), Uo(t)

_(_o (t) ,_ (t)) :0 (2.4)

The
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We can then write, using a first-order Taylor expansion:

x_(t) : f(XoCt),Uo(t)) + --XV_fCxoCt),uo(t))Cx_(t)-Xo(t)) +

and

+ _ f__Cx(t), % (t)) (u(t) -u (t)) (2. s)

Z_Ct) = gCxCt),uCt)) + ZxgCxCt),uCt))(x(t)-x(t)) +

+ Vug(X (t) ,u (t)) (u(t)-_o (t)) (2.6)

From these and using (2.4) we obtain a linearized model, with:

A_: v_j(xCt),u(t))

_B : V_uf(x ° (t)'-_o (t))

C_ : Vxg(X(t),u(t))

E=

It is important to realize that all quantities are now incremental

(departures from steady-state). In block diagram form, the control will act on

the system shown in Fig. 2.15.

Thus the input/output and state vectors of the linear system are not the

real physical variables but their increments from equilibrium Thus a resca!ing :

_ _ _ + .... , - _ . + .- . ....

of the linear model cannot be based on the nominal values. The conclusion is
: ...................................... -.. ::. . ".. ::.-:-,L__ ,-_1+: :':

_ ++that i-t is valid to examine_ the _+¢sidue •matrices of the original system,, La_er on

+ . • :- +- +_+.::.+_-: ry_L_p-2_5_:_:+

in chapter 5 we shall discuss the scaling issue in more detail. - -- - -_--+

Table _2.5 l_is_t_s_ the norms of the residue matrices. In agreement with previous

authors we find that there are dominant dynamics. They are those associated with

................... > c..-_::..- .._ ........................................ !....... "_---_"---L-_= "7+?T,_ ? Y..'T:+"
. ..+_..= .................

i.
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Fig2.15: Control Action on the Incremental Linear System.
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TABLE 2.5

Residue

EIGENVALUE

I -0.18204

2 -0.64773

3 -1.6810

4 -1.9057

5 -2.6i84

6 -6.7+ji.37 -6.7-ji.3

8 -10.

9 -12.

10 -17 8+j4.8
11 -1718-j4.8

J

12 -18.592

13 -21.+j31.3 }14 -21.-j31.3

15 -21.3+j0.8 }
16 -21.3-j0.8

17 -38.678

18 -40.

19 -47.126

20 -50.661

21 -59.161

22 -175.67

23

Matri__x_

Singular Value
Norm ........

,, l

154.3

226.9

227.76

306.3

1267.6

1488.45

Row Norm
..... j + ........

Column Norm

15.9 13.35 24.2

137.75 191.8 119.4

76.6 75.7 88.2

47.3 48.17 65.5

8'9 9.6 10.9

19.45 16.2 29.95

0.9 0.72 1.45

2.3E-3 2.3E-3-577.04 1 .87E-3

1.13 1.04 1.8

20.07 13.8 33.34

0.47 0.47 0.51

22.1 15.77 33.8

166.2 153.8 237.6

157.1 154.3

187.1 321.7

230.4 227.76

253.1 501.6

983.4 1839.2

1487.6 1869.7
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the poles at -2.6 and -6.7+_ji-3 (rad/sec). From the eigenvector analysis we

know that the principal state components for these poles are the two shaft speeds.

The complex pair of poles has, however, other states that are quite dominant.

Zeros

Table 2.6 lists the multivariable zeros for the augmented 4 input-4 output

linear system. There are no right-half plane (or non-minimumphase) zeros.

Some non-minimum phase zeros can appear when we reduce the system in chapter 3.

Thus the zeros of the original system are not directly relevant in the control

design.

Open-Loop transfer function

For a multivariable system, the best extension of a Bode plot is a plot of

the {frequency-dependent) singular values of the transfer function.

The singular values of the open-loop transfer function of the linear model

are plotted in Fig. 2.16.

The d.c. levels of the loops are not important since they are a function of

scaling. In an open-loop setting, a loop is fast if it remains flat over a

comparatively wide range of frequencies. If it rolls-off fairly soon it is slower.

Based on this we note that the upper loop in Fig. 2.16 is the slowest. It

starts rolling off at about 2xlO -I. Since the slowest pole is at -0.18 rad/sec.

it is this pole that causes the early roll-off.
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TABLE 2.6

Multivarlable _eros (Fin:Lte)

1) -0.47288

2) -0.649O5

3) -2.1283

4) -19.412

5) -20.018

6) -20.873
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2.4 Performance Specifications

We now summarize the specifications that we require of the control design.

First, we need a bandwidth requirement. This will apply to the designed

loop transfer function that includes the controller and the plant. A fast loop

in a feedback setting means a high crossover frequency.

In accordance with the control specifications given in [22], we require all

settling times to be around 2-3 see. This means that we require the engine to

reach about 90% of the change in the set of reference input values in that ti_e.

In terms of bandwidth, we require a minimum crossover at around 2-3 rad/sec.

A tight crossover pattern is desirable (i.e. a small spread of the singular

values near crossover). Taking into account also the robustness requirement, we

arrive at a desirable maximum cros3over frequency of around 15 rad/sec. As we shall

see in Chapter 3 the simpler the r_zduced model the more the omitted dynamics and

hence the lower the allowable maximum crossover. Thus the figure above is a

compromise between fast control and simplicity of design.

The second main control specification is that integral control action is

required. This is because (see [i]) it is required to have zero steady-state

error to step inputs.

This specification will be met by placing integrators in the four input

channels. The integrators come before the plant because the physical point at

which the references are injected and where we require the zero steady-state error

is at plant output. The integrators are then part of the controller which comes

before the plant in the feedback loop.
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2.S Summar X

In the present chapter we have set the problem in the form in which we plan

to address it. Our goal is to build a compensator which will control efficiently

the engine around this operating point.

The description of the engine characteristics gives the required background

for doing 'sensible' things with control. The limits of our 'thruth' model are

revealed through the examination of the sensor and actuator dynamics.

The basic data on the dynamic behavior of the engine are given and analyzed.

The residue matrix analysis sets the stage for model reduction.

The ch_ter ends by summarizing the set of specifications for control and by

outlining the proposed line of attack. It is shown that it is reasonable and

that it will accomplish the desired goal. We are now ready to start our control

design. The next chapter will deal with model reduction and chapter 4 with the

details of control.
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3. _DFL REDUCTION

3.1 Introduction _

Model _eduction means the _ppro×imation of a linear state-space system by

another of a lower state dimension.

In a control design setting, r_o]el reductien is an approximation stage and

thus can be approached by a var ety of techniques. The engineering practice of

neglecting the faster dynamics of a system is a form of model reduction. Singular

perturbation method_; therefore provide one way of doing model reduction

(see, e,g. [18]).

In this chapter, a model reduction technique is presented that has the

following features: it is a pole-preservation, state aggregation techniquewhich

yields a reduced model that is robust for use in a feedback control system design.

The proposed methodology includes a stage of modal analysis (to guide in the

selection of poles to be included f.n tile reduced model) and a singular value

characterization of modeling error which facilitates control of the robustness

properties. A significant feature of our procedure is that it employs such a

decemposition of the original system that the single-input single-output analogy

is strongest; the way the approximation works is very transparent when viewed in

the frequency domain for a scalar :_ystem.

In section 3.2 we present our model reduction scheme; we show hew it is

derived from the residue matrix (or _odal) decomposition of the system and we

relate it to previous reduction me';hcdologies in order to demonstrate the complete-

ness of our method as against the existing ones. The reduced model is analyzed

in a feedback loop configuration in section 3.3 where the norm characterization
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of error is found adequate. This leads to a discussion of robustness as it

relates to model reduction, in section 3.4. Finally the FIO0 example is given

in section 3.5, where a ISth-order reduced model is derived from the original

2Srd order for carrying out the multivariable control designs of chapter 4.

3,2 The Residue Method for Model Reduction

3.2.1 Preliminary Considerations

The purpose of any approximation method which also aims to reduce the order

of a linear system is to find another state-space system (of the desired lower

order) which 'comes close' to the original system in some sense while preserving

the physical control and output variables. A useful interpretation of this close-

ness is an input-0utput one: the output associated with the lower-order system is

required to be close to the output of the origiRal , for a sufficiently wide class

of input signals. And yet this is not enough: one must remember that the reduced

model will be used to desig_ a controller. There is no guarantee that a feedback

system will be even stable when the same controller is used in a control loop with

the origin_l system. Proximity in the input-output sense is not enough to ensure

proximity in the feedback sense.

The _bove is a shortcoming of most previous aggregation methods. 0nly recently

has one been able to address it satisfactorily (see the work of M. Vidyassagar [23]).

In this thesis, the issue of model reduction for feedback control is addressed

directly, but without having recourse to the algebraic machinery of [25]. Instead,
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we shall use an old concept in control: the bandwidth, in this case its

multivariable extensions. By making explicit a bandwidth over which our model is

accurate, we can go ahead and design a controller, which is only limited by the

bandwidth requirement.

Note that the proposed method will not be reducible to a form of singular

perturbation: a clear separation in frequency between slow and fast dynamics is

not needed and it is possible that a very slow pole is ignored.

3.2.2. The Procedure

Let us start with the original system in state space form:

_,(t) = A xCt) + B uCt) (3.1)

y(t) : C x(t) (3.2)

where the dimension of the state is n and the dimension of the input and output

are the same: u y C Rp

The associated transfer function matrix is:

_(j ) : C(j_I-A)-IB (3.3)

We shall introduce a model reduction procedure in a number of steps. It

will be seen that the method combines elements of previous reduction techniques,

with important modifications and from the viewpoint of residue analysis.

l) State aggregation: Assume a linear relationship between the original

state x(t) and an aggregate state i(t):

_(t) = K x(t) (3.4)

the dimension of z is r, with r<R.



-53-

Furthermore, assume that the state _(t) has its own dynamic equation:

iCt) = ! !Ct) + G _Ct) C3.S)

Substitution of the state aggregation equation (3.4) yields the following

relations:

F K = K A (5.6a)
m _

G = K B (5.6b)

Thus, given a matrix K, the matrices [ and G can be calculated from the

above. This is the state aggregation stage. Appropriate choices of the K matrix

can accomplish quite general model approximations. The most common method is

to choose K so as to preserve in the reduced model some selected poles of the

original system.

p
e;

2) Pole Preservation: Let the eigenvalue-eigenvector decomposition of the

system A matrix be:

A = U h U-I or 63.7a)

A = U-IA U C3.7b)

Consider the case where the eigenvalues of A, ki(A__), (i=l,2,...,n) are

distinct. Then:

A _ diag{X iCA_]}

and the eigenvector set can be normalized to form a basis for Rn.

u- [u1 u_2 u]

C3.s)

Write:

C3.9)

ii

[:

)i
r,
i

i;

1:i

!!
II

)"i
b_
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and
- T-

-1 v-2
u_ : (3.lO)

T
V

Suppose, it is desired to hav( the eigenvalues of the reduced model be:

{kil (A), .... kir (A) },
a particular subset of the eigenvalue set of A.

Now define the state aggregation matrix:

where the matrix T is block diagon_.l:

0

(where i
dim(Tk):r).

A block corresponding to a real eigenvalue is just one: _=j.

of complex eigenvalues.

(3.11)

(3.12)

For a pair
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(3. I3a)

and hence:

(3.13b)

Fact 3.1: The eigenvalues of [ are exactly the {Xij,...,kir}.

is block diagonal:

The matrix F

[o01F=
w

F.
-g

= [ Re (Xm)

where _k = k£(A) for some X£real and _k L_im(km)

Im (_m)]

Re (kin)j

for a complex

pair of eigenvalues Re(Xm)+_j Im(Xm). Finally, the matrices [ and G are real.

Proof: All parts can be checked easily. Use:

K-I = .u.[uij"" __r] l
(3.14)

the right inverse of K, to check that:

F = K A K-1 is indeed block diagonal and real.

is.

Since K is real, G also

i'

I:
!q

L

J

i
I
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Remarks:

I) The case of eigenvalues of higher multiplicity can also be treated by this

method (see [5]).

2) So far we have only obtained a state equation. The method has not given us

a way of choosing an output equation. This will be done presently, using

the point of view of residue analysis.

3) Residue Analysis: For the case of distinct eigenvalues, it is known that

the transfer matrix of the system has an additive decomposition given by:

n R. n
_(j_) = _ --I R--i/li
-- j_+X = [ I+j_/X ii=l i i=l

(3.1s)

T
where R. = C u. v. B are the residue matrices. This form is the equivalent of

--i -- --I --I --

the partial fraction expansion in scalar systems. Its advantage is that it isolates

the frequency-dependent part of the transfer function matrix in the scaiar terms

We saw in section 2.3 that the magnitude of a residue matrix provides

a measure of how important the contribution of the corresponding pole is in forming

the system output vector. Let us examine the terms of the expansion (3.15) from

the point of view of approximation.

1

Isolating the normalized terms rl(J_) = l+j_/X. (which all go to one
1

as a_O), let us suppose we have fixed a bandwidth _o' over which we want our model

to be Valid. Figure 3.1 shows three different cases: (i) IXil>_o; (ii) [XiI<_ o,

(iii) I%ii<<00o.
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It is easily seen that in case (i), the residue term will be approximately

constant over the bandwidth of interest. This is not the case in Fig. 3.1 (ii),
t

while in Fig. 3.1 (iii) the magnitude has dropped off considerably by the time

_o is reached.

The above suggest a way of approximating the various terms in (3.15). Terms

related to poles which are faster than _ can be taken to be constant:
O

Ri/X i R.

(i) l+j_]_ i _ _. ' ]Xi]>_o (3.16)
l

Terms on the low side of _ should be kept as they are. If, however, a
0

pole is too slow, we may choose to either omit it altogether, or approximate it

by an intermediate value

R_i/li R_i/li

(iii) I+jw/X. _ 0 or l+j_/X. (3.17)
l 1

where [Xi[<_ <_o

If we keep all terms either as they are or as constant (according to (3.16))

then the advantage is that we preserve the d.c. gain, since

n R.

G(o) = X.
i=l 1

Otherwise, we are introducing a low-frequency error, which will be small if

the residue term is small. Table 3.1 summarizes the options for approximation

of the various terms.
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TABLE 3.1: Term Approximations

<< ooo

NEAR _o

"2 too

SMALL

LARGE

SMALL

LARGE

ALL VALUES

TERM APPROXIMATION

0

Rt/_

P..-_I>,_
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Let us now pick the option of preserving the d.c. gain. The approximation

of the system transfer function is:

r n R
R--i/li r --i

G(j_) L l+j_o/X. + L X (3.18)
-- i=l i i=r+l i

Remarks:

I) The problem of choosing the eigenvalues to be present in the reduced

model is solved using the residue matrix method.

2) The residue method suggests a convenient way of obtaining an output

equation for the approximate model. The way this is done is given in the

following fact:

Fact 3.1: Theapproximate transfer function

r R_i/li n R.

G(j_) = _ l+J_/li + _ --1-- i=l i=r+l _"" i

can be realized by the following state-space system of order r:

_(t) = F!Ct) + G u(t)

_(t) = H z(t) + D u(t)

where the state z(t) is related to the original state by a constant state

aggregation matrix:

i(t) = K x(t)

Remarks:

11 This realization procedure is known as the Giibert diagonai reaIization

procedure [7].
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2) There exist reduction methods where the output equation is chosen so as to

match a number of moments of the original and the approximate transfer functions

{see, for example, the partial realization technique [5]). The difference is

that these methods do not include a D matrix in the output equation while we do.

Proof: The proof will be constructive.

in G as:

For i=l,...,r, arrange the residue terms

TR. = C u. v.B = (C )(v B)
--I -- --1 --1-- -- Ui -- --

Form: H'= G_,= [vl...v]TB_

n R.

and D = 7.
i=r+l 1

with F' = diag{X.} we see that (F:G_H_D) is a (complex) realization i=l ..,r

of G. This is because, since F' is diagonal, its eigenvectors are just the basis

vectors e., i=l,.,.,r and, therefore, the residue terms of the reduced system
--1

are:

H' e.eTG ' = C[u 1 eT .vr]TB=-i-i- '" --i[el'" c u.vTB.
..... 1--i--

To finish the proof we need to show that we can get a real realization

(F,G,H,D) for the same G. This is because the transformation T acts on the state

space matrices as:

F = T-IF'T, G = T-IG H = H'T
.... , .m

so that T is a similarity transform and hence the transfer function associated

with (F',G',H'D) is the same as G. o
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!

3.3 Model Errors

We have posed the model reduction problem as a transfer function approximation

problem. One can apply the framework of robustness theory in considering the

errors resulting from the approximation stage.

The characterization of error in the robustness framework is the maximum

singular value, as a function of frequency, of the error transfer function. It

is known (see e.g. [13]) that we can define an additive error, a multiplicative,

a subtraction and a division error. Of these, we choose the multiplicativeerror.

The reason is that the multiplicative error is a relative error: it makes sense

to talk about a 10% error, for example, while an absolute error is dependent on

the units used.

Let _ and G be the true and approximate loop transfer functions. The multi_

plicative error, AG can be defined in one of two ways:

AG 1 = @G)G -1 (3.19)

or

AG = C-l(_-G)
-_2 --

For G and G as in section 3.2; we have:

_R j_+Xi=r+l i=l i

(3.20)

n -joo R.G-1 (j_)

i=r+l i

(3.21)

(jm) is defined similarly.
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Now consider Fig. 5.2. It shows a feedback loop where part of the loop

transfer function _G = G3G__2G1 is approximated, so that _G = .

It is obvious that G_2 is the general point at which an approximation can

be made. Let G--2represent the plant and _i and G--3the pre-and post-compensators.

We are interested in the propagation of the multiplicative error in _2 as we

addG-I_n_G-3_otheloop

Let cl(JW ) and c3(jw ) be the frequency-dependent condition numbers of

__iCj_)=d __3<j_),i.e:

area x (G_ 1(j _) ) Oma x (G_3 (j w) )

clCJ_) = and csCjw ) =

_min (d--1 (j_)) _min (_--3 (jto))

We then have :

Fact 3.2: For the configuration in Fig. 5.2, let cl(JW ) and cs(j_ ) be the

frequency-dependent condition numbers of G_I(j_) and G_3(j_). Then, assuming the

inverses , _ , _ exist:

l) ll_cJ-)ll<_c3CJ-)IIC__2-G_2)G__lll
2 2

2) IIA_%2<J_)I12< c_<j_)II_:_x<_2-_2)I12

Proof: Easily computed.

3_2_i__,3G2_i) _ _ :Ap_1: (__G)G-1: (_...... %G_2G_I)-I

: --
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_J

True G

Approximate

Fig3.2: General Configuration of Transfer Function

Approximation in a Feedback Loop.
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2 2

(by sub-multiplicativity of norms)

and since, for the 2-norm:

Ill, ill = o C_;1) = 1

2 max -- Omin C__3)

the result i) follows.

2) follows similarly. o

Remarks: i) As a design guideline, we would like to keep these condition

numbers low so as to control the loop error more effectively. 2) If _3=_

(no post-compensation) then the loop error coincides with the error in _2"

Thus the multiplicative error A_I is invariant under all pre-compensators.

This is the final reason for having chosen this characterization of error.

Some further properties o£ AG 1 are developed in the following two

facts. Assume G-Icj_) exists, for all _.

Fact 3.5: The multiplicative error AG for the reduced model obtained in
-_I

section 3.2 goes to zero for _H) and to -I for _.

CNote that the statement applies to AG itself and not to its norm; of
-_i

course, the singular values will all go to 1 at high frequencies and to 0

for low).
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Proof: From (3.21) it is obvious that, as 0_+0,the elements of AG1 will

pointwise go to zero, because of the -j_ factor in the numerator of the

scalar multiplying each term.

Thus:

n
-j_ -i

lim &_l (j_) = lira _ _i+j _ R.G (jw) = 00_+o _ i=r+l --i-- --

For _+_, the frequency-dependent terms of 6_(j_) will go to zero, leaving:

iim AG l(j_) = lim I 1+% _ _ --I_+o _ i=r+l i i=r+l Xi = -I

Roughly speaking, because of the presence of the D matrix, the multiplica-

rive error at high frequencies is just formed by dividing D by itself; also,

since we have matched the d.c. gain, the error at low frequency goes to zero.

A handy bound on the error, which is geometric, can be found in the

case when:

''--[IRiG__l(j0_')[ I < I, for some m'. i=r+l,...,n (3.22)

2

Fact 3.4: Suppose (3.22) is satisfied. Then:

n I J_'l lA l(J ')tl ! I (3.23)
2 i=r+l 1

Proof: Write:

n -J_ R G -1 (jm)a l(J ): j +x.
i=r+l l
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Then

n __, G- 1....R. 0_')I[ <
2 i=r+l i 2

<

n n

£ iJ_' { IIR_ic-lO_')ll < _. }J_' I

Remarks: 1) The requirements is roughly that G is bigger at _' than any of

the omitted residue terms. In particular _' can be the desired bandwidth. In

that case Fact 3.4 gives a guide test whether our error is sufficiently small

at that bandwidth.

2) Geometrically, the terms I J_' I measure the ratio of the length of
{j_'+xi{

_' to the vector that jw' forms with each omitted pole.

Let us summarize at this point the reduction method proposed. The residue

matrix analysis helps in the selection of the dynamics for the approximate model.

A state-space system is obtained through state aggregation.

The approximate plant is now considered as a part of a feedback loop. The

multiplicative error in the plant approximation is the total error appearing in

the loop.

3.4. Model Reduction and Robustness

3.4.1 The Robustness Requirement

In the previous sections, the properties of the multiplicative error coming

out of the model reduction method proposed in this chapter were analyzed. This

section shows how robust control of such a reduced model is accomplished.



-68-

Fig3.3: Geometric Illustration of Fact 3.4:

An Example with 4 omitted poles.
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The ideas are not new. They can be found in the recent literature,

specifically in Lehtomaki [13] and in [14], [15].

Let T(j_) be the overall loop transfer function (that includes the reduced

model and the designed controller). Let AGI(j_) be the multiplicative error

as defined in (5.19).

Suppose the system is stable. Then if the reduced model is replaced by

the real plant model, the overall system is stable; provided that:

Omin (I_+T--1 (j _) ) > gmax (AGpl (j _) ) (3.24a3

for all frequencies _. The inequality is strict. A stronger inequality

(Laub [12]) can be stated:

gmax[(I_+T_-l(j_))h%l(j_)]< 1 for all _ (3.245)

In general, this last inequality is much less conservative than (3.24a).

Actually, (3.24a) follows directly from the above, by noting that for any

norm the Schwarz inequality is satisfied:

II ll I ill

and by using the properties of singular values.

What the requirement for robust control is, can now be visualized simply.

Fig. 3.4 shows a possible form of the multiplicative error maximum singular

value plot. The error maximum singular value goes to zero at low frequencies

and to one at high.

The design inverse return transfer function minimum singular value should

stay above the error plot, as shown. This is enough to guarantee stability.
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Fig3.4: A Possible Robustness Requirement Plo£.
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Note that eq. (5.24b) leads to a similar plot, where the requirement is

that we stay below the 0dB line. However the error is not shown explicitly

and so (3.24a) is preferred.

3.4.2. Scaling and Robustness

A few issues related to scaling will be discussed. Current literature

has not treated scaling systematically with the result that the issue is often

confused. It will be found that the discussion is also useful with regard to

the conservative nature of robustness estimates.

The general framework is given first.

Definition: A scaling transformation of a given linear system is one where the

input, output and state vectors are transformed by diagonal matrices with

(strictly) positive elements.

If u, _, x are the original and _n' Y-n' x

u = N u , y = N y , x = N x (3.25)

This leads to the following transformations of the system matrices:

A =N'IAN
_ ----X

B =N-1BN

C =N-1 CN
_ --x

D =N-1DN

the transformed vectors, then:

C3.26)



The state transformation is a special case of a similarity transformation

(since N is non-singular). The others are not. If one considers the transfer
--X

function of the system, its transformed form is:

G (s) = N-1GCs)N (3.27)
-n -y-- -u

So that, while N has cancelled out N and N still appear.
--X ' --y --U

Furthermore, considers the error in going from a true to an approximate

model. Then the multiplicative error AG 1 (as in (3.19)) becomes:

(AG_I)- n = -YN-1 A_I -YN (3.28a)

while &G (3.20) becomes:
-_2

V2)n = N-1AG N (3 28b)-u -u

Thus AG 1 is affected by the output scaling and _D2 by that of the input.

So far, the discussion was general. The concrete situations in which we

face scaling are:

i) Choice of units. Any model of a real system is built according to some

set of units for its variables. This choice of units is obviously arbitrary.

To express the same model in a different set of units, a rescaling is necessary.

The scaling matrices then account for the conversions from one set of units to

another.

2) Non-dimensionalizin_ (or Normalizing) A step further is to make the

system equations independent of units. This is accomplished by picking a set of
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'nominal' values for the variables of the system and making a scaling trans-

formation using these values in the scaling matrices. The resulting input,

output and state variables are then interpreted as fractions of the nominal

values. No units appear, so the problem of choosing the units is solved.

One wonders why then all the linear models in the literature are not

normalized in this way. The reason is that there is still considerable

arbitrariness in the process. To normalize, one needs a set of 'nominal' values.

And there is no unique way of picking these values.

An obvious rule is to take these values to be the steady-state values at

the operating point at which the linear model has been constructed (Skira and

DeHoff in [I]). But this may not be desirable, since the variables of the linear

model are incremental (i.e. departures from the steady state). There need be

no relation between the steady-state values and the levels at which the variables

are used during control.

The overriding question in considering scaling is how arbitrary it is and

to what extent scaling changes a model.

Let us take the single-input, single-output case first. There are two

remarks to be made:

1) A scaling transformation indeed scales _ap or down the system transfer

function (see (3.27)).

2) The relative error is completely independent of scaling transformations

(see (3.28)).
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The transfer function of a scalar system is a gain relation: a certain

input producing so muchoutput. It is to be expected that this gain depends

on the units used to measure the inputs and outputs.

The relative error, however, is not affected by the units used in the

SISOcase.

The multivariable case differs from the scalar case in that even the

relative error depends on the scaling used. It is easy to see from (3.28) that

the diagonal elements are not affected. An appropriate normalization, however,

can change the off-diagonal elements in such a way as to make the error norm

smaller.

And this bring us to the robustness question. To Summarize:the robustness

requirement translates into an inequality requirement: The designed inverse

return difference staying over the error. But we saw that the error is affected

by scaling (and hence normalizing) transformations.

The claim is now that the robustness requirements conservativeness can be

removed to an extent through an appropriate scaling transformation.

For this pick a normalizing matrix for the outputs (if AG 1 is used) N, _ --y

Omax[_ 1 AG 1 (j_o)_] (3.29)

is minimized. The frequency _ can be near crossover or at an appropriate
o

point of interest.

The minimization indicated above is not easy. Instead one can derive an

empirical Ny, based on the behavior of the error near _o" Furthermore, since

such that:
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the diagonal elements are not affected, there is a limit as to what the

choice of N can accomplish. These points w_ll be demonstrated shortly in
-y

the discussion of the F100 engine.

The committment to the elements of N as nominal departures is not binding.
-y

The control design may end up using departures that are substantially different.

The point is that the robustness requirement is now less conservative.

To summarize, we used the arbitrariness of scaling transformations to get

a transformation of the linear model that leads to a better error norm behavior.

3.5 Aggregated FI00 model

In this section a reduced model is derived from the augmented FI00 linear

dynamics. The goal is to derive a model that will allow the control to have a

bandwidth of about 15 rad/sec. At the same time, it is desirable to have a

simple model. Thus we require the order of the model to be as low as possible,

subject to the control bandwidth requirement.

An examination of Table 2.3 shows that at the region of the desired bandwidth

are the following poles: -17.8+__j4.78, -18.59 and -21.3+_j0.8. Turning to Table

2.4, the magnitudes of the residue terms corresponding to these poles can be

compared. Since the residue corresponding to the pole at -18.59is small, we

choose to omit this pole.

Including everything else up to the complex pair at -21.3+_j0.8 gives a

13th order system. This is now tentatively the reduced model. Table 3.2 lists

the included poles. The reduction procedure creates some multivariable zeros

-\ %
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TABLE 3.2: Poles of the Reduced Model.

i) -0.18204

2) -0.64773

3) -1.6810

4) -1.9057

5) -2.6184

7) -6.7148+91.312

8) -10

9) -12

10)]

11)[-17. B0s+_j4.v811

12)_
13)) -21. 327+j0.8::083

TABLE 3.3: Zeros of the Reduced Model.

i) 39.023

2) 24. 109

4) 14.663+317.671

6) 4.3179+_j88.061
.6

7) -0.47322

8) -0.64886

9) -2.1281

i0) -19.466

ll))i12 -20. 381+j3.1208

13) -21.205

Non-minimum phase

Minimum phase
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which are, in general different from those of the original system. These

zeros are listed in Table 3.3. It is important to note the presence of non-

minimum phase (right-half plane) zeros. They, in general, inhibit the

robustness recovery process. In our case, they are all outside the desired

bandwidth. The smallest zero is at 24.1 tad/see. It will be seen in the

design chapter that robustness recovery is still possible, despite these non-

minimum phase zeros.

Having included all the important poles up to the desirable bandwidth

does not imply that the multiplicative error will satisfy the bandwidth

requirement, as set out in section 5.4. Fig. 3.5 plots the multiplicative error

of the tentative reduced model. We see that the maximum singular value of the

error crosses over at between 5 and 4 rad/sec. This is not a bandwidth wide

enough to base a design upon (given the bandwidth requirement of about 15 rad/sec).

To remedy the situation, we go back to the discussion of scaling in section

3.4.2. By using appropriate nominal values for the departures of the output

variables from steady-state [which is equivalent to choosing an N matrix), we
Y

hope to get a higher crossover frequency.

The minimization of formula (3.29) is not easily done. Instead, the

elements of the residue matrices can be examined. In this way, it is possible

to come up with good choices for the N matrix. It is the case that most of
-y

the error at high frequencies occurs at elements different than those where the

error is concentrated at low-frequencies. Scaling down these elements was

possible by choosing an appropriate N matrix. This improves the characteristics
-y

of the error at crossover by pulling the singular values closer. The choice

of N is:
--y
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N
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(3.3o)

This can be translated into the following nominal departures of the

output variables:

N 1 = i00 RPM

N 2 = i00 RPM

P3 = I0 PSIA (3.31)

T_4.5 = i° R

Note that only the relative magnitude of these values matters. An

overall scaling of N upwards or downwards as formula (3.28a) indicates, does
--y

_ot affect the multiplicative error.

Figure 3.6 shows that the crossover is now at around 16 rad/sec and is

therefore satisfactory.

The reduced model that has been arrive at has these two nice features. First,

there is no clear separation of slow [inclu6ed) and fast (omitted) poles as in

the singular perturbation methods [18]. Second, a pole slower than the bandwidth

was omitted (since its residue was small), while the reduced model remained

satisfactory. The scaled true and approximate transfer functions _re plotted

in Figs. 3.7 and 3.8.
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A further illustration of the second point above is given in Fig. 3.9.

The slowest pole {at -0.18) is now left out. It is noticed that, while the

high-frequency crossover is not much affected, the error is rather large at

low frequencies. Thus, this model could also be used for design, but some

design freedom would probably have to be compromised. We do not use this

model for design in this work.

3.6 Chapter Summary

The present Chapter has introduced ideas that are quite central to the

development of the design methodology expounded in this thesis.

Model reduction leads first of all to approximate models whose validity is

exactly assessed through the robustness measures. Thus, feedback control can be

implemented reliably. The controllers can be made fast, insomuch as the model

allows it. Finally, the order of the controller is controlled exactly through

the order of the reduced model. This is a particularly attractive feature, as

compared to modern algebraic approaches to controller synthesis.

The chapter also included a discussion of another important issue: scaling

was examined as a limi_ation but also as a _ay of making robustness measures

less conservative. The next chapter is the design chapter where the reduced

model is used to build a controller.
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4. COMPENSATOR DESIGN

4.1 Introduction

We have finally reached the design stage. In this chapter, a compensator

will be built that is based on the LQG procedure. The singular-value based

loop-shaping approach to LQG will be taken. This means that, having translated

the specifications for control into constraints in the frequency-domain it will

be attempted to shape the loops of the design (more specifically, the singular

values of the overall loop transfer function) so as to meet the specifications.

As in traditional control, there are two kinds of specifications: performance

requirements and plant uncertainty limitations. In the engine example, for

performance we required fast control (all loops crossing over at fast enough

frequencies) and zero steady-state error to step changes in the reference signals

and output disturbances. The kind of plant uncertainty that will be of concern

is that arising from the approximation involved in the model reduction stage.

Section 2 gives an overview of the LQG procedure. Section 3 details the

steps of the methodology, which is then applied in Section 4 to the engine example.

The robustness recovery stage is described in Section S. In Section 6 welmake

Sure the Specifications have been met. " '

4.2. A Summary of the LQG Procedure

4.2.1 Preliminary Considerations

In this section a brief summary of the Linear-Quadratic-Gaussian methodology

is given. This will, first of all, serve the purpose of fixing the notation.
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A_more important reason is that we wish to emphasize the modern slngular-value

loop-shaping perspective of Stein [19 ],[20]. We thus need a selective exposition

geared to that point of view. Finally, we derive some new results which supplement

the Stein method. They refer mainly to the connections between the state,space,

mathematical structure of the LQG method and the resultartt frequency-domain

characteristics. This is in keeping with the general philosophy of this thesis

which seeks to make maximum use of engineering practice in the frequency domain.

Standard references formost of the results in this section are [10], [19].

The LQG procedure is a mathematically elegant method of choosing a stable

multivariable controller for a given state-space system. Substantial freedom

exists fQr the designer to pick the parameters of the design. This is more of a

disadvantage, since there exist no reliable ways of directly affecting the

controller structure through choice of parameters using a purely optimization-

based philosophy.. One objective of the present work is precisely to expand the

possibilities of doing this. In particular, we shall d_rive ways of con_rolling

both the bandwidth of a controller and its behavior n_ar crossover. More generall)

we shall get a handle on the spread of the singular values at particular frequency

ranges. It is obvious that the above are loop-shaping tools of considerable

usefulness.

4.2.2 The LQG Procedure and Loop Transfer Recoverz

Start with a state-space description that in¢ludes state and observation

noises _ a_d _ that. are white.
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£Ct) = A x(t) + B u(t) + r {(t)

y(t) = C_x_(t] + _(t)

(4.la)

(4.Ib)

The intensity matrices of _ and _ are _ and N respectively. Because

enters the system via r_, there is no loss in generality in assuming an identity

intensity matrix for it.

The LQG compensator for the system (4.1) includes a Kalman filter as a

state estimates and the constant LQ gains K_c. The configuration of the controller

is shown in Fig. 4.1. The state estimator dynamics are:

,% ,%

x_(t) --A__x_Ct) + _Bu_Ct)

and the feedback law is:

#%

+ i_(y(t)-cx_(t)) (4.2)

u_Ct)= -__(t) (4.3)

The gain matrices K_c, Kf are given by:

K = R-1BTp (4.4)

£f = Z cTN -I (4.5)

where P and E solve the algebraic Riccati equations:

Controller Algebraic Riccati equation:

(CARE): --_ATp+ __PA + R- p B R-IBTp = 0

Filter Algebraic Riccati equation:

(FARE): A _ + Z AT + r rT - z cTN-Ic Z = 0

(4.6)

(4.7)
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The resulting feedback loop (as shown in Fig. 4.1) is stable. Its poles

are the eigenvalues of A-KfC and of A-B K .

In the absence of specific noise data or when the noise sources are not

important in the system (as is the case for the engine), there is considerable

freedom in selecting the noise statistics. In fact, one can use F and N

directly as design parameters, together with _ and R.

Robustification:

Now it is shown (see e.g. [21]), that the loop transfer functions (LTF) at

points (i)' and (ii)' in the loop (Fig. 4.1) are particularly simple:

LTF at (ii)': K _(j_) B ffi G Cj_) (4.8b)-c - -c

(where _(j_) = (j_-A] "1)

At the physically meaningful points (i) and (ii), however, the loop transfer

functions are more complex. The LTF recovery results (due to Kwakemaak .[9],[10]

and Stein [21]) given a way o£ recovering the desirabie loop transfer functions

G£and G at these real points (i) and (ii)

In the engine example, point Cii) correspond to the entry poin t to the

integrators and not to the input o£ the plant. Thus, point (ii)is not a meaningful

point in our case. We shall limit our considerations to point (i).

The version of the Kwakernaak recovery results that we shall use states

that, choosing the LQparameters as follows:
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R_- ! (4.9a)

O,- H.TH_, where H- _ (4.963

and letting q_, the loop transfer function at point (i) will approach

Gf(j_), pointwise"

C4.1o3

under the assumption that there are no non-minimum phase zeros of the plant.

If there are any, the experience has been that the recovery procedure still

works, but the convergence breaks down near the frequencies where the zeros are.

No theoretical result that completes the picture exists yet.

Kalman Equalities?Loop Shaping

The reason in doing loop transfer function recovery is that the t ranJfe r

function _ (or G_c) is easier to shape. Thi swili be developed in the next sectic_
2

The basic instruments for shaping the loops are the Malman equalities, derived

from the algebraic Riccati equations (4.6) and (4.7).

LQ Kalman Equalities:

e

Direct : rZ+G__(jm) ]

Inverse: [I__+G_Cl(jto) ] * R_[I..+G_1 (jc_)] - (G__1 (j_))*R G_ 1 (jc_)+((K_c);1)_(K_c)p1

(4.12)
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KF Kalman Equalities:

Direct:
[I+G_(jm) ]N [I+Gf(jm) ]* _ _ _..... : N_+ (C ¢(j_)r_)(C ¢(jm)r) (4.13)

Inverse:

C4.14)

where * denotes the hermitian transpose and (K_£) -1 and (K_f)Lt-R are theright-

and left inverse of -oK and Kf, which exist if and only if _B and _Chave full rank.

Formulae (4.12) and (4.14) are proved in Appendix B. Some well-known

robustness properties follow from these relationships, for the case where

R = pI and N_ = pI.

Robustness Properties:

1)

2)

_min [I+G-c (j_o) ]>_ 1

Omin [I+< 1 (jco) ]>_ 1/2

3) qmin[!+GfCj_)]_ 1

4) Omin[I_+Gfl (j_)]_ 1/2

for all _.

Properties (2) and (4) are proved in Appendix B. Properties (1) and (3)

(4.15)

C4.16)

have been known for a long time.



-92-

4.3 Design Methodology

The set-up for control is shown in Fig. 4.2. The feedback loop is composed

of the reduced model augmented by the integrators and the LQG controller. The

overall compensator K(s) thus include the integrators and the LQG controller.

For the purposes of robustness it is required that:

For all _, Omax(AG l(j_))< Omin[.I+(G(j_)!(j_))-l] . (4.17)

The steps of the design procedure will be:

Design a Kalman filter transfer function, Gf, that satisfies the robustness

Vi: Oi[ £[(j_)Kf] _.gi[C_(j_)Fj//p

l)

requirement and meets the design specifications (good crossover behavior and

zero steady-state error on steps).

2) Recover Gf approximately by design of the LQ regulator. At this stage, one

can only hope that the non-minimum phase zeros will not cause any trouble. Push

the recovery sufficiently so that the robustness requirements and design speci-

fications are still met. If not, go back to the first step and modify the Kalman

filter appropriately.

Shaping the Kalman filter loo M

The design parameters of the Kalman filter are the matrices [ and N. Note

that the column dimension of r is arbitrary.

Rewrite the Kalman equality (4.13) for N = B_.

* 1 *

[i+£f = I+ -- (C b (C

At low frequencies, because of the integrators present in the loop, we can

expect Gf(j_) to be large. In this case it easily follows (Stein [19]) that:

For all (4.18)
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Fig4.2: LQG-based Engine Control Setup.
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= This iS a most useful form. It allows us considerable freedom in shaping the

low-frequency end of Gf(j_). By choosing an appropriate [ matrix, we can control

the spread of the singular values. Then the choice of p controls the gain of the

loop.

A good choice for _ is such as to make _ _(Jw)_! at low frequencies. For

our problem, the integrator-augmented state-space system is:

A= ,B_= , C_=D H_
£

(4.19)

where ([,_,H,D_) form the reduced model. Choosing

it is easy to check that:

1 [H(joJi-F)-IG + D_]G(0)-I (4.20)c t(j_)r= j-_ .....

so that, at low frequencies:

!
.---I (4.21)c___(j_)r
]tO--

I
Thus C @ r behaves like To,

&uj

and we have managed to pull together the

singular values of Gf.
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_e par_eter _ can now be used to control the speed of the loop. A high

me_s a slow loop _d a small _ gives a faster loop.

If the singular values do not spread out too much as the frequency increases

this low-fre_ency pulling may be enough to give a well-behaved crossover pattern

(i.e. all singular values crossing over close to each other). If not, then we may

need to sacrifice'the low-frequency pulling by using a diagonal N: N=diag{ni}.

By adjusting the relative magnitudes of the n., one can better control the crossover
1

characteristics of the various singular values.

Note that if instead, we had picked:

[01_= -

0

that would have accomplished a pulling of the singular values of C _ _ at

high,frequencies. However, there is no guarantee that:

a i CGf) = a i CC _ r__)

since it is not true that Gf will be large at high frequencies.

4.4 The Design Sequence

It is time to turn to the F100 engine exmnple and apply the loop-shaping tools

discussed so far.

The design model is the 13th-order scaled reduced model derived in chapter 3.

To see in what direction the control should be applied, the open loop transfer
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function of the scaled reduced model, augmented by the integrators, is plotted

in Fig. 4.5. It is noticed that the singular values have a substantial spread

(about 30 dB near crossover) and thus the crossover pattern is not satisfactory.

At low frequencies, the integrators take over and the singular values all behave

1
like -- . Similarly, at high frequencies, the impract of the D matrix of the

S

reduced model is not present; the singular values roll-off at the rate of 20dB

decade, due to the effect of the integration. (The reader should compare Fig. 4.2

with Fig. 5.8).

We have • two options: try pinching the singular value loops at low Or high

frequencies. To see how the _ _ _ loops look like, we plot in Figs. 4.4 and 4.S

the transfer function _ _ _ for the two choices of [:

[ c:iI [0:iIr = and F =

Compared to Fig. 4.5, these transfer functions are essentially rescaled

versions of the original transfer function. They differ only in the fact that the

Bmatrix, [_1, (see (4.19)) is replaced by a_matrix, given by one of the above

two versions.

It is clear that the alignment of the singular values is effective in both

cases. However, when the Kalman filter gains Kf are designed for these choices

of _ (with N=I_) and Gf(j_) is plotted (Figs. 4.6,4.7) the difference is apparent.
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Fig4.3: The Scaled Reduced Model with Integrators:

Singular Values vs Frequency.
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The low-frequency alignment hasresulted in a much tighter singular-value spread

and, hence, better crossover behavior. Moreover, the high-frequency alignment

is not so effective since, as we have noted , the approximation:

is not valid (Fig. 4.6). Especially because over £he desired bandwidth the low-

frequency alignment is much more effective, from now on we abandon the high-

frequency alignment.

Now the design of Fig. 4.7, for N--I_, is still a little slow. In view of the

bandwidth requirement (2-3 r/s to 10-15 r/s) we can afford to push the controller

a little faster. This is done by scaling N down. Fig. 4.8 plots Gf(j_) for:

G(0) 1
_F = -- and N_ = SxlO-3! .

o

From Fig. 4.8 we can see that the lowest crossover is now around 3 r/s and

the highest at around 12-13 r/s. This is judged as a satisfactory design, from

the performance limitations, since it corresponds to settling times of 2-3 secs.

Attempts to pull the singular value loops even closer by a diagonal N did not

lead to any improvement. Thus Fig. 4.8 is taken to represent the final !oop shape

that is tO be recovered.

Let us note that a diagonal N has in a sense already been employed in this

design. This is because the reduced model is a rescaled version of the original

reduced model, as was explained in section 3.5. And scaling of the C matrix of a

system corresponds to picking a diagonal N matrix in the Kalman filter problem
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with elements equal to the inverses square of the nominal values that make up

the output scaling matrix. This can be seen from the algebraic Riccati equation

of the Kalman filter:

A Z + Z AT + F FT - Z cTN-Ic Z = 0

Now the robustness requirement (4.17) has to be checked. Fig. 4.9 plots

singular values of [I+Gfl(jm)]. As Fig. 4.10 shows, the designed loop meetsthe

the robustness requirement, since is above Gmax[

for all frequencies.

This is not, however, the complete design. Step 2 of section 4.5 is still to

come. We must recover the designed transfer function GT(je ) by designing the LQ

compens at or.

4.5 LOgp TransferRecovery (LTR)

As we have seen, we need to recover the desirable Kalman transfer function

f. For this, we pick the parameters R and _ of the LQ regulator to be:

= L, _ = --HTH_ with _H : qC

where the scalar q is increased until we get a satisfactory recovery of Gf. The

results are illustrated in Figs. 4.11 to 4.14. Fig. 4.11 corresponds to q=100.

We see that the recovery is quite good (compare Fig. 4.8 with Fig. 4.11), up to

the point where we have the right-half plane zeros (around 20 r/s). Note that an

interesting feature of the recovery process is that the Kalman filter transfer



-105-

L

"_0

-d

-2_ ; ' _ _ i_l_J i | i I ill[ i I i--ii|l '- | _ I i lttq {'2")

• i_ 4--O_ i_ 3

_og frequ_nc_ (rad/sec)

Fig4.9: Plot of Designed Inverse Return Difference

Function (!+_f _j_)) ; Singular Values

vs Frequency.



-106-

2"

I.

I_ i_ _ I_?

lo_ frequency (rad/sec)

uO

Fig4. i0 : Robustness Requirement Plot:

Inverse Return Difference Function

staying over the Multiplicative Error.



-107-

8O
dB

w

-d0

-8O

Io_ {frequency (rad/sec)

Fig4.11: Loop Transfer Recovery: q=100 ; Singular

Values vs Frequency.



-108-",

4o _-, , •

o-t

-40 -}---
E

_1
!
l

-80

!
!

1
I

1
!

i
t
i

t
I

i
I

! i I i i}}]

10 '-1

l i lliI-- i I I I lilt 1 l I I illl _ | I i-il"{'_ f'_

10 10 2 10 3

log frmqu_ncg (radJsec)

Fig4.12: Loop Transfer Recovery: q=10 3-, Singular

Values vs Frequency,



-109-

8O

dB

4O

0

Log frec[u_ncy (rad/sec)

Fig4.13: Loop Transfer Recovery: q=104; Singular

Values vs Frequency.



dB

80 1
!

w

!

!

-ii_-
!

k
i

i

I -i I I II11 --q- t-i i lii-i

!o
| I I I Ilil/ ' i i'|il

to s frequenc_ (rad/sec)

Fig4.14: Loop Transfer Recovery: q=10 5.

Values vs Frequency.

Singular

I

t
T

;i



-Iii-

function Gf (j_) is recovered from below. This means that the LQG loop transfer

function G K(j_) remains below Gf(j_) and as q is increased, it comes closer and

closer to Gf.

As we keep increasing q, it is seen that no great problems are created by

the presence of the non-minimum phase zeros. Finally, at the value q=10 S

(Fig. 4.14) the recovery is really quite satisfactory. Comparing the two transfer

functions in Figs. 4.8 and 4.14 we see that they differ most in the frequency

region where the non-minimum phase zeros are. This slight bump in the singula_

value shapes is the only price we had to pay for the non-minimum phase zeros.

It now only remains to check again that the robustness requirement is met:

For all m: _min[I+(G K(jm)) -1] > _max(Afipl(jm))

This is illustrated in Figs. 4.15 and 4.16. The designed minimum singular value

of the inverse return difference function stays above the maximum singular value

of the appropriate multiplicative error.

To summarize, the design parameters have the following values:

R:I

= HTH with H = I05C

N = 5xlO -3 I
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4.6: Evaluation of Actual Closed-Loop Design

The final control configuration includes the LQG Controller followed

by the integrators in the input channels of the plant, followed by the full

linear plant dynamics, as shown in Fig. 4.17.

We know that this overall system is asymptotically stable, since the

robustness requirement is met with the reduced model in place of the full

model. As a check, the closed-loop eigenvalues are calculated. They are

listed in Table 4.1. It is thus verified that the closed-loop system is stable.

All forty four eigenvalues are in the open left-hand plane. A number of them

are in the region of the design bandwidth, from I0 to 20 rad/sec.

It is obvious from Fig. 4.17 that the second control specification, that

of integral action, is satisfied. The feedback loop includes the integrators

in the forward loop, so that the error between the reference signals and the

outputs passes through them. Fig. 4.18 plots the singular values of the overall

loop transfer function, _(j_)K(j_), where K(j_) is the overall compensator, as

in Fig. 4.17. All singular values roll-off at the rate of 20dB/decade at low

frequencies, due to the integrators.

The final control specification is that of a satisfactory bandwidth. The

crossover behavior of the overall loop transfer function (Fig. 4.18) is very

close to that of the loop transfer function with the reduced model in place, as

Fig. 4.19 shows. It plots the minimum and maximum singular values of the 'true'

and approximate loop transfer functions. It superimposes Fig. 4.19 with Fig. 4.14.

The minimum and maximum crossovers of the two transfer functions are at 2.5 and

about 12 rad/sec, respectively. The bandwidth of the final design is satisfactory
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TABLE 4.1

Closed-loop Eigenvalues.

-0.4748+jl.83E-3 , -0.649+j6.17E-4 , -1.482+ji.4 ,

-2.122 ,-2.127 , -4.37+j4.08 ,-5.34+j87.6 ,

-5.716+j7.71 , -8.31+j25.85 , -8.585+j7.09 ,

-ii.775+ji.946 , -13.577 ,-16.442 , -17.92+94.82 ,

-18.079+_6.275 , -19.853 ,-21.38+90.8423 ,

-21.95+90.56 , -24.556+935.05 , -41.626 , -50.0 ,

-50.21+j28.256 , -93.83 , -177.24 , -577.02 ,

-764.24 , -777.35 , -7710.2 , -25075.
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An additional perspective is provided by Fig. 4.20. It plots the singular

values of the closed-loop transfer function (l_+_(j_) (K(j_))-I_(j_)K(j_),

from the reference inputs to the engine outputs. The noticeable feature of this

plot is that all loops remain flat over a broader range of frequencies than

the open-loop singular values of the plant itself (compare with Fig. 3.8).

Control has opened up the bandwidth of the singular value loops and thus has

sped up the responses. Fig. 4.21 plots the unit step responses from each

reference input to the corresponding output. These time responses satisfy the

requirement of section 2.4. At the two second point, the responses have reached

more than 90% of their final values (the responses with the approximate model in

the place of the 'true' one are very close to those in Fig. 4.21).

For comparison, the step responses of the open-loop full engine dynamics

are also plotted, in dashed lines, in Fig. 4.21. It is obvious that the greatest

improvement is in the response of the T4. S output (which was slow due to its slow

sensor). For N1 and N2, the optimal step responses are slightly less damped than

they were, while the response of P3 is slowed down a little. Fig. 4.21 also plots

the responses of the other outputs to the steps in each input. Those outputs not

plotted respond by less than 10% of the step magnitude.

4.7 Chapter Summary

Loop-shaping ideas in the LQG setting were used to design a satisfactory

controller for the FI00 engine.

These loop-shaping ideas, based on the Kalman equalities, were developed in

Section 2. They are basically due to Stein et.al., although some new variations

were necessary for out setting. Thus, singular value pullings at low and high
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frequencies were accomplished in the presence of integral control by

appropriate choices of the Kalman filter parameters.

The resulting Kalman filter loop transfer function was then recovered

for the overall LQG controller using standard recovery techniques. It was

seen that recovery was not hindered by the presence of non-minimum phase zeros.

Finally, it was shown that the designed LQG controller gives a satisfactory

stable loop when the full linear model replaces the approximate reduced one.
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5. SUMMARYANDDIRECTIONSFORFURTHERRESEARCH

S.l Summar Z

This thesis presented a multivariable control design example which comprises

the following parts:

I) Significant actuator and sensor dynamics were added to the full linear model

of the FI00 engine. Additional dynamics, integrators in the input channels,

were added so as to get loop-shapes that the LQG procedure cannot produce by itself.

2) The resultant augmented linear system is taken as the 'true' model. Model

reduction is now done in order to reduce the order of the dynamic controller,

for simplicity of design. The reduction method follows the robustness perspective.

Modal analysis and singular value characterizations of error are the main components

of the proposed technique. The result is a 'robust' reduced model that yields an

overall stable configuration when replaced by the true model in the feedback loop.

5) The controller was designed based on the LQ0 methodology in its modern

frequency-domain version of Stein, Doyle et.al. Reliable and simple !o0p-shaping

techniques were employed to yield a controller that satisfies the desired bandwidth

requirements.

5.2 Some conclusions and directions for further research

The robustness viewpoint to model reduction is a simple enough idea but a

useful one, if model approximation is to be viewed in a feedback setting. The

development of the reduction method in this work benefitted from the additive

decomposition of the system transfer function (the modal decomposition). In the
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case when there is no such decomposition (if, for example, the eigenvalues of

the model are not distinct), the method does not work. Some extension of the

robustness perspective through similar decompositions is therefore necessary.

The extension to non-distinct eigenvalues is an example.

Another direction that this thesis supports is that of frequency-domain

relations for LQG (state-space) based designs. The Kalman equalities are the

most familiar and most useful starting point to date. It is hoped that more

work will reveal other frequency-domain properties of LQG designs and will help

bridge the gap between practitioners of these two relatively distinct techniques.

The usefulness of singular value characterizations for multivariable systems

was demonstrated in this thesis. Both the model reduction stage and the design

stage depended on these characterizations. Insomuch as they extend the familiar

Bode plots, singular values are a frequency-domain tool. And yet singular value

properties of state-space systems are easily handled, as the loop-shaping tools

of Chapter 4 showed. We believe that singular values should play a central role

in multivariable control design.
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APPENDIX A

TABLE A.I: Augmented Linear System A,B,C Matrices.

TABLE A. 2: Reduced Linear Model(13th-order) A,B,C,D

Matrices. "

TABLE A. 3: LQG Compensator A,B,C Matrices.
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TABLE A.I

Augmented Linear

A Matrix

Number of rows • 23
Number of columns = 23

System (Plant+Sensors+Actuators).

- 1.0000E+0t O.OOOOE+OO O.OOOOE+00 0.OO00E+O0 O.OOOOE+OO O.OO00E+OO '%
O.OOOOE+OO O.OOOOE+OO O.OO00E+OO O.O00OE+OO O.OOOOE+OO O.OOOOE+OO
O.O000E+O0 O,O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0
O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

0.0OO0£+00 O.OOOOE+OO t.0OOOE+OO O.OO00E+OO O.OOOOE+OO O.O000E+O0
O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0
O.OO00E+OO O.OOOOE+OO O.OOOOE+OO O.OO00E+OO O.OOOOE+00 0.OOOOE+OO
O. O000E+O0 O. O000E+O0 O. O000E+O0 O. O000E+O0 O. O000E+O0

O,O000E+O0 - t. 4205E+03 -4.2 t J3E+0t O. O000E+O0 O,O00OE+O0 O.O000E+O0
O.OOOOE+O0 O.O00OE+O0 O.OO00E+00 O.OO00E+O0 O.O00OE+OO O.OOOOE+OO
O.OOOOE+OO O.OOOOE+OO O.OOOOE+O0 O.OO00E+OO O.OOOOE+O0 O.OOOOE+OO
O.OOOOE+OO O.OOOOE+OO O.O00OE+OO O.0000E+O0 O.OOOOE+OO

O.00OOE+OO O.OOOOE+O0 O.OOOOE+00 -t .200OE+O1 O.OOOOE+OO O.OOOOE+OO
O.O00<)E+O0 O.O000E+O0 O.O000E+O0 O,O000E+O0 O,O000E+O0 O,OO00E+O0
O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O,O000E+O0 O.O000E÷O0
O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.0000E+OO O.OOOOE+OO

O.OOOOE+OO O,OOOOE+OO O.OOOOE+OO O.0OOOE+OO -4.0OOOE+Ot O.O000E+O0
O.OOOOE+OO O.OOOOE+O0 "O.OOOOE+OO O.OO00E+O0 O.OOOOE+OO O.OO00E+OO
O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0
O.O000E+OO O.OOOOE+O0 O.OOOOE_OO 0.0000E+OO O.OO00E+OO

-4.5700E'02 -4.5t60E+02 O.O000E+O0 - 1.0580E+O2 - f.5060E+OO -4.3280E+00
J.7140E-01 5.3760E+00 4.0160E÷02 -7.2460E+02 -t.933OE+OO 1.0200E+O0

-9.8200E-01 9.99OOE-01 I .5210E+00 -4.0620E+00 9.56TOE+00 I .0080E+01
-6.0170E-O1 -t.312OE-0t 9.6020E-O2 0.OOOOE+O0 O.OOOOE+OO

t.11"40E-01 -5.4610E+O2 O.OO00E_-OO -6.5750E+00 -t.0780E+O2 -4.4020E-01
-5.6430E+OO 1.275OE+02 -2.3350E+O2 -4.3430E+02 2.6590E+O1 2.04OOE+OO
-2.5920E+00 1.1320E+0t 1.O900E+01-4.07t0E+00 -5.7390E-02 -6.0630E-01
-7.4880E-02 -5.9360E-01 -9.6020E-02 O.O00OE+OO O.OOOOE+OO

2. IS30E-O1 1. 362OE÷03 O. OOOOE+OO 1. 3460E+01 2.Ot40E+O1 t .0380E÷OO
6.O730E+OO -1.65OOE+O2 -4.4830E+OO f.O4gOE+03 -8.2450E+Of -5.31'4OE+O0
5.0970E+OO -9. 3890E-03 1. 3520E -0t 5. 6380E+00 2. 2460E -02 1'. 7970E-01
2,40"/0E-02 1, tOOOE+O0 2.7430E-02 0.OOOOE+O0 O.OOOOE+OO

3.2620E-Ot 2.080OE+02 O.O000E+OO -2.8880E+00 -t.6530E+00 5.3040E-01
- t. 0860E-01' _. 3 t 3OE+O2 -5. 7830£+02 I. 0200E+02 -9. 2400E+O0 - t'. t460E+00
-2.408OE+OO -3.O81OE+00 -4.529OE+00 5.7070E+OO -2.3460E-O1' -2.tlt0E+OO
-2.46OOE-01 -4.6860E-Ot -3.2230E-01 O.OOOOE+OO 0.OOOOE+OO

9.9480E-03 -9.8390E+0t O.O00OE+OO 5.0690E-0t -1.9400E-0t 8.4760E-03
-t.563OE-O2 5.6020E-O2 1.5730E+OO -1.005OE+O1 t.9520E-0t -8.8040E-03
-2.1'1OOE-O2 2.090OE-O3 -5.256OE-02 -4.0770E-02 -9. t820E-03 -8. t780E-O2

3. 4280E -02 4. 995OE-O3 - 1. 2560E -02 O. OO00E+OO O. OOOOE+OO

2.7280E-02 7.1620E+0| O.OO00E+OO 9.6080E+00 -3,1600E-0t 8.3500E-01

ist

2nd

Row

Row
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A Matrix (Continued)

-'_.2490E-02 -3.5670E-02

-2.9620E-02 -I.9530E-02

-2.5140E-02 -3.7490E-03

|.7160E-02 7.1750E+01

-1.2640E-02 -9.6830E-02

-3.9280E'02 _.8780E'02

-3.3700E-02 8.8730E-02

-7.7410E-02 -1.4120E+02

8,6660E-01 1.6870E+01

-1.9970E+01 2.2530E-02

2.8350E-02 -3.7490E-02

3.8550E-02 -7.7100E+00

-t.6360Eo02 1.8470_-0_

6.6230E+00 -4.9990E+01

5.3490E-03 O.O000E÷O0

5.7070E-04 -1.1440E-01

-2.4300E-04 2.7180E-03

9.8120E-02 -6.6660E-0t

7.1310E-05 O.O000E+O0

S.7270E+O0 -1.7450E+03

-6.7170E+00 2.6260E+01

3.6840E÷01 2.8540E-01

3.6240E-01 -4.3430E-0I

1.3920E-01 -2.4300E+01

-4.5390E-01 -5.2720£+01

9.7500E÷00 -9.6270E+00

1.2030E-02 -4.6860E-02

6.1720E-03 -1.0820E+00

-2.0170E-02 -2.3430E+00

4.3330E-01 -4.2780E-01

5.3490E-04 -1.9990E-03

6.7770E-02 1.6600E+01

-2.A690E-O! -2.4050E+01

4,4860E÷00 -4,4140E+00

-I.9770E+01 -4.9990E*02

1.8SOOE-03 9.1470E+00

3.0200E-02 1.1980E'01

1.2490E-01 -1.1270E-03

-1.0700E-03 -2.0,000E÷01

1.6770E-01 4.3580E+02

1.8310E+00 -3.8220£+00

-6.1660E-01 5.00AOE-01

3.0630E÷Ot 1.9890E÷01

O.O000E+O0 O.O000E+O0

• O. O000E+O0 O. O000E+Od

O. O000E+O0 O.O000E+O0

O. O000E+O0 O.O000E+O0

O. O000E +O0 O. O000E +O0

O, 0000 E +00 O. O000E+O0

0.0000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0

-6.0740E-0_ 3.7650E+01 -1.9T90E+01 -1.8130E-01

-t.6220E-01 -6.4390E-03 -2.3460E-02 -2.2010E-01

-3.3610E-02 O.O000E+O0 O.O000E+O0

O.O000E+O0 8.57t0E+00 7.9890E-01 6.7680E-0|

-3.5670E-01 8.0240E÷01 -8.2390E-02 -2.0470E+0|

-2.1290E-Of o9.3370E-03 -3. f440E-02 o2.9fgOE-Of

-4.4580E-02 O.O000E+O0 O.O000E+O0

O.O000E+O0 -8.2150E-0| 3,g740E+Ot -9.6960E-02

1.051OE+O0 -1.0230E+02 2.9660E÷0t 5.9430E-01

1.7910E-01 8.3710E-03 2.6450E-02 2.5600E-01

3.6350E-02 0.0000£+00 O.O000E+O0

O.O000E+O0 -4.3710E-02 -1.0240E-01 -8.7850E-03

2.1690E-01 -8.4200E÷00 7.0030E-0t 5.6660E-02

6.7600E-02 3.9460E÷01 4.9910E-03 8.9830E-02

t.3720E-02 0.0000£÷00 O.O000E+O0

O.O000E÷O0 -6.3590E-04 -1.4320E-03 -t.2980E-04

3.2140E-03 -1.2460E-Of 1.0390£-02 8.3950E-04

-6.6570E-0t 5.8470E-0| 6.6540E-05 1,3470E-03

2.0570EI04 O,O000E+O0 O.O000E+O0

O.O000E+O0 -8.9400E+00 -1.7960E+01 -1.2070E+00

1.2490E÷01 -_.2690E+03 1.0300E+02 7.4800E+00

2.3320E÷00 -4.7650E÷01 3.4060E-0t 3.0650E÷00

4.68tOE-01 O.O000E+O0 O.O000E+O0

O.O000E+O0 -2.7360E-01 -3.4030E-01 -2.7300E-02

1.9880E÷02 -2.8090E÷0| 2.2430E÷00 1.7940E-01

-9.5570E+00 3.8480E÷01 -5.0010E+Ol 1.0110E-01

1.7150E-02 O.O000E+O0 O.O000E+O0

O.O000E÷O0 -1.1830E-02 -1.4520E-02 -t.2060E-03

8,8350E+00 -1.2480E+00 9.9750E-02 8.0590E-03

-4.2450E-01 f.7|OOE+O0 o2.0000E÷O0 -|.9960E÷00

7.5440E-04 O.O000E+O0 O.O000E+O0

O.O000E÷O0 3.9800E-0t 2.3110E-02 -1.6130E-01

2.3380E+01 1.4630E+02 1.6380E+00 t.3850E-0t

-4o35AOE+O0 1,7660E+01 -3,_130E+00 -3,0180E+00

1.5090E-02 O.O000E+O0 O.O000E+O0

O.O000E+O0 -S.24fOE-01 8.9840£-02 -1.24AOE-02

-4,82tOE-02 5.6750E+00 -4.5250E-01 1.9810E+01

-6.7600E-03 |.8350E-02 -9.9810E-04 -t.3470E-02

-2.0570E-03 O, O000E*O0 O.O000E+O0

O.O000E+O0 -8.9940E+01 4.9000E÷00 -1.6530E+00

1.1340E+02 3.4fAOE+02 -2.7340E+0t -2.0400E+00

-1.4370E-01 -2.4160E+00 -I.0730E-01 -_.0780E+00

-5.0160E÷01 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E*O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E÷O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E÷O0 O.O000E*O0 1.0000£+00

0.0000£+00 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O00OE+O0 O.O000E+O0

O.OOCK)E+O0 O.O000E+O0 l.O000E+O0 t.OOOOE+O0

O.O000E+O0 -3.0600E-01 -|.8630E+00
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B Matrix

Number of rows = 23
Number of columns • 4

t .6000E+04 O.O000E+O0 O,O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 5, t 138E+02 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 5.7600E+0t O.O000E+O0

O.O_OE+O0 O.O000E+O0 0.0000£+00 1.6000E+02

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O. O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

o.ooooE+oo o.ooooE+oo o.oooo_;_:OL6oOoE,oo

O.O000E+O0 O.O000E+O0 O.O000E+O0.0.O000E+O0

O.O000E+O0 O.O000E+O0 O.O00OE+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 _O.O000E-_O0 O.O000E+O0 O.O000E+O0
.... =

O.O000E+O0 O.O000E+O0 O.OOGOE+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O,O000E+O0 O.O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0



-129-

C Matrix

Number of rows - 4
Number of columns - 23

O. O000E÷O0 O. O000E +00
O. O000E+O0 O. O000E +00
O. O000E+O0 O. O000E+O0
O. O000E+O0 O. O000E+O0

O.O000E+O0 O.O000E+O0
1. O000E -02 O. O000E+O0.

O.O000E+O0 O.O000E+O0
O. O000E+O0 O. O000E÷O0

O.O000E÷O0 O.O000E+O0
O. O000E+O0 I. O000E-01
O. O000E+O0 O. O000E+O0
O. O000E+O0 O. O000E +00

0. O0(09E +CX_ 0. O(O)OE+O0
O. O0(X)E+O0 O. O000E+O0
O. O0(X)E+O0 O. O(OOE+O0
O.O000E+O0 O.O000E+O0

O.O000E÷O0
O. O000E +00
O.O000E+O0
O. O000E+O0

O. O000E+O0
O. O000E +00
O.O000E+O0
O. O000E+O0

O.O000E+O0
O.O000E+O0
O.O000E+O0
O.O000E+O0

O.O000E+O0
O.O000E+OO

O.O000E+O0
O.O000E+OO

O.O000E+O0
O. O000E+O0
O. O000E +00
O. O000E+O0

O. O000E+O0
O. O000E+O0
O. O000E +00
O.O000E+O0

O.O000E+O0
O.O000r+O0
O. O000E+O0
0.0000£+00

O.O000E+O0
O.O000E+O0
O.O000E+O0
3.0501E-01

O.O000E+O0
O. O000E+O0
O.O000E+O0
O.O000E÷O0

O. O000E+O0
O.O000E+O0
O.O000E+O0
O. O000E+O0

O.O000E+O0
O.O000E+O0
O.O000E+O0
O. O000E+O0

O. O000E+O0
O. O000E +00
O.O000E+O0
6.4500E-01

t. O000E -02
O. O000E+O0
O.O000E+O0

O. O000E+O0
O. O000E +00
O. O000E +00

O. O00OE ÷00
O. OOOOE ÷00

O. O00OE +00

O.O000E+O0
O. O000E +00
O. O000E +00
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TABLE A.2: Reduced Linear Model (13th-order).

i

A Mat ri__xx i

Number of rows = 13
Numbe_ of columns = 13

- !.8204E-Of O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 "{
O.O000E+O0 O.O000E+O0 O.O000E+O0 O,O000E*O0 O.O000E+O0 O.O000E+O0 [
O. O000E+O0

O,O000E-t-O0 -6.4773E-01 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 _,
O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O,O000E+O0 J
O. O000E+O0

O.O000E+O0 O.O000E+O0 -1.68t0E+00 O.O000E+O0 O.O000E+O0 O.O000E+O0
O,O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0
O. O000E+O0

O.OOOOE+O0 O.OOOOE+O0 O.OOOOE+OO -t.9057E+O0 O.OOOOE+OO O.OOOOE+OO

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E÷O0 O.O000E+O0
O.OOOOE+O0

0.0000£';0.0 O.O000E+O0 0. 0000_: +00 O.O000E+O0 -2,6184E+00 O,O000E+O0
O.O000E+O0 O.O000E+O0 O,O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0
0. O000E +00

0. O000E+O0 O. O000E +00 O. O000E÷O0 0, O000E+O0 O. O000E÷O0 -6 ."/148E+00
1.3120E+00 O.O000E+O0 O,O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E÷O0

O. O000E+O0

O.O000E+O0 O.O000E+O0 O,O000E+O0 O.O000E+O0 O.O000E+O0 -1,3120E+00
-6.7'148E+00 O. O000E+O0 O, 0000£+00 O. O000E÷O0 0. O000E+O0 0. O000E+O0
0.0000E+O0

O.O000E+O0 O,O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0
O.O000E+O0 -t,O000E+0t O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0
0. C.O00E+O0

O,O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O,O000E÷O0
O. O000E+O0 O.O000E+O0 - t. 2000E+01 O. O000E+O0 O.O000E+O0 O.O000E+O0
O. O000E +00

O.O000E+O0 O,O000E+O0 O.O000E+O0 O.O000E+O0 O'.O000E+O0 O.O000E+O0
O.O000E+O0 O.O000E+O0 O.O000E÷O0 *|.7805E+01 4,7811E+00 O,O000E+O0
O, O000E+O0

O.O000E+O0 O.O000E+O0 0.0000£¢00 O.O000E+O0 O.O000E+O0 O.O000E_O0
O.O000E+O0 O,O000E+O0 O.O000E+O0 -4,7811E+00 -1.7805E+01 " O,O000E+O0
O. O000E+O0

O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0
O.O000E+O0 O.O000E+O0 0,0000£+00 O.O000E+O0 O.O000E+O0 -2. 1327E+01
8. 2083E-01

O.O000E+O0 0.0000£+00 O.O000E+O0 0.0000£+00 O.O000E+O0 O.O000E÷O0
O.O000E+O0 O.O000E÷O0 O.O000E+O0 0,0000-+00 O..O000E+O0 -8.2083E-01

-2. 1327E+0_

Ist Row

2nd Row
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B Matrix

Number of rows - 13

Number of columns - 4

-l.020SE+02 -5.4804E+01 6.1782E÷00 -6.0380E+00

-9.5696E+0_ -5.3693E+01 6.0663E+00 -4.0074£+00

-5.2944E+02 -3.4591E+02 4.5373£+01 -5,5671£+00

4.1156E+02 2.7677E+02 -3.6298E÷01 -4.0825£+00

1.8033E+03 1.2088E+03 -1,1150E+02 -3.6040E+02

-7.1127E+03 3,7908E+03 2.9841E+02 -3.73_6E+02

3.4852£+03 -7.0229E+03 2.3309E÷03 -5.5582E+02

-_.7929E+04 -4.5900E-13 1.3229E-13 -1.1499E-t4

2.5552E-03 8.6478E-04 -2.6201E+03 -5.4893E-04

-3.3495E+03 -1.4558E+03 t.9954E+03 -1.7168E÷03

-7.8277E+03 -9.0622E+03 2.8374E+03 -3.9683E+02

-2.1596E+03 2.7043E+03 -1.4267E+03 -2.9133E+03

4.3323E+02 5.1529E÷02 8.7011E+02 t.0469E+03

C Matrix

Number of rows - 4

Number of columns = 13

-1.2191E-16 -5.7540£-03 1.6744E-15 6.2025£-03 7.4149E-03 -8.6084£-03

-2.3112E-03 4.1692E-03 -3.3729E-03 1.0773E-03 -2.5420E-04 5.8003E-04
-2.9312E-04

-4.t063E-17 -7.9997E-03 7.5435E-16 3.1829E-03 6.5244E-03 t.48t4E-03

1.606tE-03 3.7509E-04 3.4668E-03 1.7975E-03 1.1369E-03 4.4066E-04
-3.9096E-04

9.4307E-18 -2.0845E-03 4.6635E-17 4.2193E-04 2.1854E-03 5.7540E-05

2.7827E-03 7.2614E-05 3.9814E-03 -1.6006E-04 1.0811E-03 -8.489tE-04
-9. 0062E-05

-t.8456_-0t t.27t9£-03 -3.9839£-0t -3.0070E-0t -t .8362£-02 1.2475E-02

1.0_97£-02 -6.4502E-05 t.8712E-02 6.7780£-03 6.4378£-03 t.7616E-03
.:. -1.9437E-03

D Matrix

Number of rows = 4

Number of columns • 4

|.9803E-O| I.O703E-O1 -7.1554E-O3 7.O440_-O2

4.5757£-01 3.5007E-01 -2.1356E-03 2.9165E-01

-t.0649E-01 9.6939£-01 4.2396E-02 5.2261E:02

1.5824E+00 1.5492£+00 2.5866£-02 7.4509E-0|



TABLE A.3: LQG COmpensator State Space Matrices

A Matrix ......

Number of rows - 17
Number of co|umns - 17

-1.3632E+05
2.9522E÷04

-t.t099E÷03

-7.5623E+04
1.8644E+04

-8.t16_E÷02

-7.5630E+04 2.2566E+02 -5.7732E+04 1.4_88E+04 -1.3732E+O2[

2.2056E+04 t.2365E_O3 -5.5235E÷02 -G 4918E+02 -I.OOt2E+O2J 1st ROW
-4.1890E+02 -3,8405E+02 °t,1366E+02 1,2281E+02

-_.6445E+05 -4 g085E÷03 -4.4085E÷04 9.3288E÷03 -5,2391E+02[
t.4256E+04 t_2757E+03 -8.1959E+02 -4,667OE÷02 I 3299E+02[ 2nd Row

-2.5579E+02 -2.6031E+02 -4.2803E+01 7.2448E+01 J

2.2424E+02
2, t826E+O2

-4.8829E+02

-4.9042E+03 -9,9955E+02 -8.8700E+00 -t.t534E+O2 -4.305OE*O2
7.1362E+02 5.G552E+02 -7.t39gE+02 -3.1958E+02 3.3595E+02
6.38T2E+01 -8.04t4E_01 6.3980E+01 -t.0151E+0t

-5,7731E+04
-t.4373E+O4

4.8376E+02

-4.4088E+04
-t.O526E+04

1,9114E+01

-8.0692E+OO
-t.7018E+O2

1.3757E+02

-3.4686E+O4
4.OO3tE+02

-1,t728E+O0

-6.9495E+03
4.3397E+02

-9.0167E÷00

-6.625TE+02
-2.5734E÷00

-9,2057E+0_
-1,_236E+00

7.t729E-02

-5.0610E÷01
-1.4270E+O0

4.1734E-O2

6.0754E+00
-5,9019E-O2

2.8490E-02

-1.6494E+00
3.9496E-02
t.5460E-O2

-t.0732E+00
3.401OE-02

°1.092tE-02

-2.3439E-02
1.239OE-O2

-8.8063E+0t
-9.t387E-0t

3,7255E-02

¢5,194OE+02
5.56t7E+OO

-3.8591E-01

4.0638E+02
-8.1042E+00

3.6736E-01

-5.2915E÷0|
-6.5859E-01

3.O463E-O2

-3,9698E+02
5.7829E÷00
2.2938E-02

3.2401E+02
-8.3046E+00
-2.5381E-03

s.86s2_,oo -s._611E-o_ -4.=33T¢-o_ -6.g_s=E-ol
3.93t4E-03 2.0T71E-02 1.4_25E-02 t.O3_8E-02
t.585_E-o= 1.2_63E-o= -7._37e_-o_

s.o3s4E-ot -3.tslgE-Ot -2.6S71E-Ot t,1t0_E-01

-3,3766£+0t =6,9409E+00 -3.7545E+00 5.4857E-0t
-8.1926E-O1 2.8406E-01 2.5_15E-01 _8.3591E°02

t.0488E-0| -3,6827E-02 -t,3330E-02

t.6947E+O3
-7.Tg23E+O1

8.3639E-O_

t.3956E÷03
-6.O891E+Ot
-2.2825E-O1

-g.692gE+01 -4.6426E+02 -3.6t0OE÷O1 6.4883E÷OO
-f.O862E÷01 1,_466E-O2 7.7967E-01 t.7665E-0t

3.949OE-01 -1.58t8E-O1 -7.4370E-02

-5,244tE+03
-5.8525E+O2

3.OO79E+Ot

g. O638E+03
-4.3t61E_02

9.5994E+O0

4.6316E+02 7,1343E+02
-t.233|_+01 -6.7694E+00

t.1251E÷01 4.7697E-0_

-2.7113E+O2
1.9083E+01

-3.3014£+O0

-7.5675E+OO
7.9465E+OO

-9,4847E+00
9.4784E+O2

-6.7128E+0_

-I.5217E+04
-6.9831E+02

4.4894E+O_

-1.3632E+04
7.2468E+02

-1.5t44E+O_

5.7869E+O3
-5.2234E+02

t.2515E+01

4.3914E÷02 -8.2358E+02
-1.O457E+O2

2.232YE+OO

-3.6952E÷O3
1.320OE+01

-9.4695E+00

-8.6633E+O3
2,7405E+O2

-1.8320E+01

-1.5789E+O3
-3,O094E+O2

_.3745E+01

-9.5622E+O1
5.8052E-O_

-_._292E+03
t.8370E+0t

-t.8411E+01

-t.O529E+O4
2.t281E+O2

-8,2865E+00

3o83t1E+O3
-2,3337E+O2

2.6563E+00

2.1333£+03
4.7071E÷01

-2.O188£+01

t.6839E*02
-2.O396E+0_

J,48_2E+01

-2.649tE+03
-2.3956E+Ot

2.3388E+O0

2.0t_0E+03
8.0766E÷00
3.2273£+00

2.T902E+03
1.8878E+01

-2.3053£+01

-1.385tE+O3
-2.3491E+01

4,2253£+00

-2. 6270E+03 4.3911E+02 - 1. 4663E+00
-5. 186tE+01 -4.5821£+01 8.8299E÷00
-9.1174E-Ot 4.6400E÷00

,6055E÷03 -3.235_E÷O2 -9.2738E_OO
1.9606E+O1 2,60ttE+O1 -B.2733E+OO

9.4008E-01 -3.9381E÷00

.2. 2897E+02 -4.8446E÷O1 t.24_3E+01
3.2i87E+0| 8, 1309E+OO r - t.2931E+01
2.3616E-O_ 1 o0236E-0|

-1,96t3E+03
-1.9658E+O1
-5.O786E-O2

6.1153E+OO
-5.3224E+O0
-5.2813E-02

-2.tt03E÷00
7.9071E÷00

-8.6861E+O2 1.2696E+O2 -5.5t82E+OO
-t.7156E+O1 -1.0776E+01 4.1636E+OO
-1,8940E-O1 t,0921E+00

-2.6682E+O3 -t.3942E+O2 1.t326E÷0t
t.2188E+01 8o2556E+00 -2,4832E+OO

-2.10TOE+01 -1,3037E-0t

4. t86_E+02 7.7193E+02
5.4054E+O1 4.5676E+01

-2.5992£+00 |.4328E-O_

8.7530E+02
g.5065E+OO

-4.1816_-01

1.0766E+03 2.5042E÷0t
-6.8668E+00 -1.5876E+00
-8,5972E-O1 -2._373E+0t

-6.4319£+00'
2.8038E+00
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B Matrix

Number of rows = 17

Number of cotumms • 4

2.9025E-0t 2.2167Ez0| 1.97t8E+00 t.1708E+00

-2.5731E+00 t.3526E+00 -4.5641E+00 -2.3102E+00

-1.685_E+01 5.7610E+00 -6.4092E+00 9.TT2OE-01

1.9137E+00 -9.3996E+00 1.1545E-0| 2.872_E+00

-2.8712E+00 -2.8681E+00 4.7417E+00 -4.8285E+00

-2.0115E+00 -6.6049E+00 5.47t0E+00 -2.293gE+00

-2. t435E+0t -G.4094E+O_ 4.9t37E+01 t.Bt80E+O|

1.4548E+01 6.5703E+01 -4.1550E+01 -2;0343E+01

-l.2484E+02 9.2165E+02 -t.991_E+02 -_.9560E+02

-|.GE98E+03 1.0886E+03 -3.2674E+03 -1.4691E+03

-2.2252E+03 1.0439E÷03 2.8846E+03 2.3792E+03

-3.5270E+02 -4.07t7E+02 -2.9824E+03 -|.7528E403

3".1750E+03 -1.1183E+03 t.3224E÷03 -2.6249E_02

-2.0066E÷03 _.3562E÷03 -6.5809E+02 3.3134E÷0_

-_.9716E÷02 4.4736E-Or 5.2329E+02 6.STSOE÷02

4.9721£+02 1.0384E+03 -3.8514E+02 -7.5540E+02

-6.4361E÷02 -2.3463E+02 -3.2579E+02 1.3568E+02

• C Matrix

Number of rows • 4

Number of columns • 17

_.3632E+05 7.5626E+04 -2.257TE+02 5.7T31E+04 -_.4188E+04 t.3T33E+02

-2.9522E+04 -2.2056E+04 -t.2365E+03 5.5233E+02 6.49_6E÷02 t.0012E+02

1.1099E+03 4.1889E+02 3.8404E+02 t.1366E+02 -t.2280E+02

7.5626E+04 t.6446E+05 4.9087E+03 4.4087E+04 -9.3293E+03 5.2390E+02

-1.8645E+04 -t.4256E÷04 -1.2T57E+03 8.1960E+02 4.6672E+02 -1.3298E+02

8.1166E+02 2.5580E+02 2.6033E+02 4.2804E+0t -7.2453E+0_

-2.2577E+02 4.9087E+03 9.9969E+02 7.9836E+00 t.t552E+02 4.3043E+02

-2.1787E+02 -7.1323E+02 -5.6540E+02 7.t382E+02 3.1954E+02 -3.3588E+02

4.8823E+02 -6.3872E+0t 8.0403E+0t -6.3980E+01 1.0t49E+0t

5.?T31E+04 4.40BTE÷04 7.9836E*00 3.4686E+04 6.9500E+03 6.6250E+02

1.4374E+04 t.0527E+04 1.7028E+02 -4.0031E+02 -4.339BE+02 2.5691E+00

-4.8377E+02 -1.9119E+01 -t.3758E+02 t.1709E+O0 9.0192E+00
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APPENDIX B

PROOF OF THE INVERSE K%LMAN EQUALITIES

(EQUATIONS (4.12),.(4.14))

To prove (4.12)

ASSUMPTIONS:

left inverse

B full rank, R_>O, Q> 0 .

-1
_i. such that: B__ _B = _I"

Taking transposes:

Since B has full rank, it has a

so _ has a right inverse (B_T) 1 1)T

Riccati equation:

Now start with the algebraic

ATp + P A + Q- P B R-IBTp = 0

" i

Add and subtract (j_P_):

-(-j_I-AT)p - P(j_I__-A)+ R- p B R-IBTp = 0

Pre-multiply by R _1p__-1; Post-multiply by p--I(BS)RI R

Ident ifying:

cJ  l*-

G__lcjto) = __lcj I_A)p-I(BS) R R

G_ * G-Iand adding on both sides the term ( i) R
----C

we obtain (4.12).
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Equation (4.14) is the exact dual of (4.12) and is proved in the same

way.

PKOOF OF ROBUSTNESS PROPERTIES (2) AND (4).

For R_ = pI we get, from (4.12) :

since " ((K)-I) T QCKc)'1 >_ 0.

From this it follows that:

oi [I--+Ocl(j(_)]>- °i (Gcl (j(_))=

: O. [I+< 1(j(_)-I_] >

> i - o.[z+_z(j_)]

and for i=n the result follows from the identity: Oi+j_I(A+B_< - Oi(A_)

for the case i=l, j=l. ......................

[12],

: 41

I

i
p

I

i

1.

i
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